Identification of Potentially Dangerous Glacial Lakes in the Northern Tian Shan

  • Tobias BolchEmail author
  • Juliane Peters
  • Alexandr Yegorov
  • Biswajeet Pradhan
  • Manfred Buchroithner
  • Victor Blagoveshchensky


Like in many other parts of the world, the glaciers in northern Tian Shan are receding, and the permafrost is thawing. Concomitantly, glacial lakes are developing. Historically, outbursts of these glacial lakes have resulted in severe hazards for infrastructures and livelihood. Multi-temporal space imageries are an ideal means to study and monitor glaciers and glacial lakes over large areas. Geomorphometric analysis and modeling allows to estimate the potential danger for glacial lake outburst floods (GLOFs). This paper presents a comprehensive approach by coupling of remote sensing, geomorphometric analyses aided with GIS modelling for the identification of potentially dangerous glacial lakes. We suggest a classification scheme based on an additive ratio scale in order to prioritise sites for detailed investigations. The identification and monitoring of glacial lakes was carried out semi-automatically using band ratioing and the normalised difference water index (NDWI) based on multi-temporal space imagery from the years 1971–2008 using Corona, ASTER and Landsat data. The results were manually edited when required. The probability of the growth of a glacial lake was estimated by analysing glacier changes, glacier motion and slope analysis. A permafrost model was developed based on geomorphometric parameters, solar radiation and regionalised temperature conditions which permitted to assess the influence of potential permafrost thawing. Finally, a GIS-based model was applied to simulate the possibly affected area of lake outbursts. The findings of this study indicate an increasing number and area of glacial lakes in the northern Tian Shan region. We identified several lakes with a medium to high potential for an outburst after classification according to their outburst probability and their downstream impact. These lakes should be investigated more in detail.


Glacial lakes GLOF Debris-flow Remote sensing Geomatics GIS Modelling Hazard assessment Tian Shan 



The authors would like to thank D. Quincey and C. Huggel for their thorough comments which significantly improved the quality of the manuscript. The logistic support by I. Severskiy, I. Shesterova and A. Kokarev (Institut for Geography, Almaty) is appreciated.


  1. Aizen VB, Aizen EM, Melack JM, Dozier J (1997) Climate and hydrologic changes in the Tien Shan, central Asia. J Clim 10:1393–1404CrossRefGoogle Scholar
  2. Aizen VB, Kuzmichenok VA, Surazakov AB, Aizen EM (2006) Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Ann Glaciol 43:202–213CrossRefGoogle Scholar
  3. Alean J (1985) Ice avalanches: some empirical information about their formation and reach. J Glaciol 31:324–333Google Scholar
  4. Allen SK, Schneider D, Owens IF (2009) First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand’s southern Alps. Nat Hazard Earth Syst Sci 9(2):481–499CrossRefGoogle Scholar
  5. Baimoldayev T, Vinohodov V (2007) Kazselezashchita–operativnye mery do I posle stihii–Izd. Bastau, Almaty, p 284Google Scholar
  6. Bajracharya SR, Mool PK (2009) Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann Glaciol 50(53):81–86CrossRefGoogle Scholar
  7. Berry PA, Garlick JD, Smith RG (2007) Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sens Environ 106(1):17–27CrossRefGoogle Scholar
  8. Berthier E, Vadon H, Baratoux D, Arnaud Y, Vincent C, Feigl KL, Rémy F, Legrésy B (2005) Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sens Environ 95(1):14–28CrossRefGoogle Scholar
  9. Blagoveshchenskiy VP, Yegorov AB (2009) The Ile Alatau range natural hazards. In: Materials of the international conference on mitigation of natural hazards in mountain areas, 15–18 Sept 2009. Bishkek, pp 153–157Google Scholar
  10. Böhner J (1996) Säkulare Klimaschwankungen und rezente Klimatrends Zentral-und Hochasiens. Göttinger Geographische Abhandlungen, vol 101, pp 166Google Scholar
  11. Bolch T (2007) Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Glob Planet Change 56:1–12CrossRefGoogle Scholar
  12. Bolch T (2008) Klima-und Gletscheränderungen im nõrdlichen Tien Shan (Kasachstan/Kyrgyzstan) mit einem Vergleich zur Bernina-Gruppe/Alpen (in German with English and Russian abstract and captions). VDM Verlag Dr. Müller, p 264, ISBN: 3-639-03742-1. (= Bolch T (2006) Dissertation, Universität Erlangen-Nürnberg, p 210.
  13. Bolch T, Kamp U (2006) Glacier mapping in high mountains using DEMs, landsat and ASTER data, Grazer Schriften der Geographie und Raumforschung. In: Proceedings 8th international symposium on high mountain remote sensing cartography, vol 41, 20–27 March 2005. La Paz, Bolivia, pp 13–24Google Scholar
  14. Bolch T, Kamp U, Olsenholler J (2005) Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In: Oluic M (ed) New strategies for European remote sensing. Millpress, Rotterdam, pp 119–127Google Scholar
  15. Bolch T, Buchroithner MF, Kunert A, Kamp U (2007) Automated delineation of debris-covered glaciers based on ASTER data. In: Gomarasca MA (ed) GeoInformation in Europe (= Proceedings of 27th EARSeL-symposium, 4–7 June 2007, Bozen, Italy). Millpress, Netherlands, pp 403–410Google Scholar
  16. Bolch T, Buchroithner MF, Bajracharya SR, Peters J, Baessler M (2008) Identification of glacier motion and potentially dangerous glacier lakes at Mt. Everest area/Nepal using spaceborne imagery. Nat Hazard Earth Syst Sci 8(6):1329–1340CrossRefGoogle Scholar
  17. Bolch T, Yao T, Kang S, Buchroithner MF, Scherer D, Maussion F, Huintjes E, Schneider C (2010) A glacier inventory for the western Nyainqentanglha range and Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 4:419–433CrossRefGoogle Scholar
  18. Bolch T, Pieczonka T, Benn DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal, Himalaya) derived from stereo imagery. Cryosphere 5:349–358CrossRefGoogle Scholar
  19. Buchroithner M (1996) Jökulhlaup mapping in the Himalaya by means of remote sensing. Kartographische Bausteine 12:75–86Google Scholar
  20. Buchroithner M, Jentsch G, Wanivenhaus B (1982) Monitoring of recent geological events in the Khumbu area (Himalaya, Nepal) by digital processing of Landsat MSS data. Rock Mech 15:181–197CrossRefGoogle Scholar
  21. Chedija OK (1986) Morfostruktury i novejzhij Tektogenez Tjan-Shanja, Ilm, FrunseGoogle Scholar
  22. Clague JJ, Evans SG (2000) A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat Sci Rev 19:1763–1783CrossRefGoogle Scholar
  23. Dashora A, Lohani B, Malik JN (2007) A repository of earth resource information—CORONA satellite programme. Curr Sci 92(7):926–932Google Scholar
  24. Delevaux D, Abdrakhmatov KE, Lemzin IN, Strom L (2001) Opolszni i Razpyvy Keminskogo Zemletrjacenija 1911 g. s Ms 8, 2 v Kirgizii. Geologija i Geofisika 42(10): 1667–1677Google Scholar
  25. Erohin S, Cerny M (2009) Monitoring of out bursting lakes of Kyrgyzstan. In: Material of the international conference on mitigation of natural hazards in mountain areas, 15–18 Sept 2009, Bishkek, pp 30–34Google Scholar
  26. Falorni G, Teles V, Vivoni ER, Bras RL, Amartunga KS (2005) Analysis and characterization of the vertical accuracy of digital elevation models from the shuttle radar topography mission. J Geophys Res 110 (F02005). doi:  10.1029/2003JF000113
  27. Frey H, Huggel C, Paul F, Haeberli W (2010a) Automated detection of glacier lakes based on remote sensing in view of assessing associated hazard potentials. In: Kaufmann V, Sulzer W (eds) Proceedings of 10th international symposium on high mountain remote sensing cartography. Grazer Schriften der Geographie und Raumforschung, vol 45, pp 261–272Google Scholar
  28. Frey H, Haeberli W, Linsbauer A, Huggel C, Paul F (2010b) A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials. Nat Hazard Earth Syst Sci 10(2):339–352CrossRefGoogle Scholar
  29. Fujita K, Suzuki R, Nuimura T, Sakai A (2008) Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya. J Glaciol 54(185):220–228CrossRefGoogle Scholar
  30. Gardelle J, Arnaud Y, Berthier E (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob Planet Chang 75:47–55CrossRefGoogle Scholar
  31. Giese E, Moßig I, Rybski D, Bunde A (2007) Long-term analysis of air temperature trends in central Asia. Erdkunde 61(2):186–202CrossRefGoogle Scholar
  32. Gorbunov AP, Severskiy EV (2001) Seli okrestnostej Almaty. AlmatyGoogle Scholar
  33. Gorbunov AP, Severskiy EV, Titkov SN (1996) Geokriologichesije Uslovija Tjan-Shanja iPamira, Institut Merzlotovedenija, Rassiyskaja Akademija Nauk, IrkutskGoogle Scholar
  34. Gorbunov AP, Marchenko SS, Severskiy EV (2004) The thermal environment of blocky materials in the mountains of central Asia. Permafr Periglac Process 15(1):95–98CrossRefGoogle Scholar
  35. Granshaw FD, Fountain AD (2006) Glacier change (1958–1998) in the north Cascades national park complex, Washington, USA. J Glaciol 52(177):251–256CrossRefGoogle Scholar
  36. Haeberli W (1983) Frequency and characteristics of glacier floods in the Swiss Alps. Ann Glaciol 4:85–90Google Scholar
  37. Havenith HB, Strom A, Jongmans D, Abdrakhmatov A, Delvaux D, Tréfois P (2003) Seismic triggering of landslides, part A: field evidence from the northern Tien Shan. Nat Hazard Earth Syst Sci 3(1/2):135CrossRefGoogle Scholar
  38. Hsü KJ (1975) Catastrophic debris streams (Sulzstroms) generated by rockfalls. Geol Soc Am Bull 86:129–140CrossRefGoogle Scholar
  39. Huggel C, Kääb A, Haeberli W, Teysseire P, Paul F (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can Geotech J 39:316–330CrossRefGoogle Scholar
  40. Huggel C, Kääb A, Haeberli W, Krummenacher B (2003) Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Nat Hazard Earth Syst Sci 3:647–662CrossRefGoogle Scholar
  41. Huggel C, Zgraggen-Oswald S, Haeberli W, Kääb A, Polkvoj A, Galushkin I, Evans SG (2005) The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat Hazard Earth Syst Sci 5:173–187CrossRefGoogle Scholar
  42. Ives J (1986) Glacial lake outburst floods and risk engineering in the Himalaya. ICIMOD, KathmanduGoogle Scholar
  43. Iwata S, Ageta Y, Naito N, Sakai A, Narama C, Karma (2002) Glacial lakes and their outburst flood assessment in the Bhutan Himalaya. Glob Environ Res 6(1):3–17Google Scholar
  44. Janský B, Sobr M, Engel Z (2011) Outburst flood hazard: case studies from the Tien-Shan mountains, Kyrgyzstan. Limnologica—ecology and management of inland waters. doi:  10.1016/j.limno.2009.11.013
  45. Kääb A (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens Environ 94:463–474CrossRefGoogle Scholar
  46. Kääb A, Huggel C, Fischer L, Guex S, Paul F, Roer I, Salzmann N, Schlaefli S, Schmutz K, Schneider D, Strozzi T, Weidmann Y (2005) Remote sensing of glacier-and permafrost-related hazards in high mountains: an overview. Nat Hazard Earth Syst Sci 5:527–554CrossRefGoogle Scholar
  47. Kahle E (1998) Betriebswirtschalftliche Entscheidungen: Lehrbuch zur Einführung betreibswirtschaftlicher Entscheidungstheorie. MünchenGoogle Scholar
  48. Kaibori M, Sassa K, Tochiki S (1988) Betrachtung über die Bewegung von Absturzmaterialien. International symposium of INTERPRAEVENT 1988/07, vol 2, pp 227–242Google Scholar
  49. Kamp U, Bolch T, Olsenholler J (2005) Geomorphometry of Cerro Sillajhuay, Chile/Bolivia: comparison of DEMs derived from ASTER remote sensing data and contour maps. Geocarto Int 20(1):23–34CrossRefGoogle Scholar
  50. Kasatkin NE, Kapista VP (2009) The morainic lakes dynamics in the Ile Alatau. In: Materials of the international conference on mitigation of natural hazards in mountain areas, 15–18 Sept 2009. Bishkek, pp 55–58Google Scholar
  51. Keller F (1992) Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO. Permafr Periglac Process 3(2):133–138CrossRefGoogle Scholar
  52. Kocak G, Büyüksalih G, Jacobsen K (2004) Analysis of digital elevation models determined by high resolution space images. Int Arch Photogramm Remote 35(B4):636–641Google Scholar
  53. Korjenkov AM, Kovalenko VA, Usmanov SF (2004) Long-term preservation of paleoseismic deformation as a tool for revealing traces of ancient seismic catastrophes (example of the Chon-Kemin Valley, Kyrgyzstan). Kartographische Bausteine 28:137–154Google Scholar
  54. Kutuzov S, Shahgedanova M (2009) Glacier retreat and climatic variability in the eastern Terskey-Alatoo, inner Tien Shan between the middle of the nineteenth century and beginning of the twenty first century. Glob Planet Change 69(1–2):59–70CrossRefGoogle Scholar
  55. Leprince S, Barbot S, Ayoub F (2007) Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans Geosci Remote Sens 45(6):1529–1558CrossRefGoogle Scholar
  56. Luckman A, Quincey D, Bevan S (2007) The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sens Environ 111:172–181CrossRefGoogle Scholar
  57. Lukk AA, Yunga S, Shevchenko VI, Hamburger MW (1995) Earthquake focal mechanisms, deformation state and seismotektoniks of the Pamir-Tien Shan region, central Asia. J Geophys Res 100(B100):20321–20343CrossRefGoogle Scholar
  58. Ma D, Tu J, Cui P, Lu R (2004) Approach to mountain hazards in Tibet, China. J Mt Sci 1(2):143–154CrossRefGoogle Scholar
  59. Marchenko SS (1999) Sovremennoje i ozhidaemje v 21. V. izmenenije merzlotno-klimaticheskikh uslovnij b severnom Tjan-Shanje. Criosfera Semli 3(2):13–21Google Scholar
  60. Marchenko SS (2001) A model of permafrost formation and occurrences in the intracontinental mountains. Norsk Geograf Tidsskrift 55(4):230–234CrossRefGoogle Scholar
  61. Marchenko SS, Gorbunov AP, Romanovsky VE (2007) Permafrost warming in the Tien Shan mountains, central Asia. Glob Planet Change 56(3–4):311–327CrossRefGoogle Scholar
  62. Medeuov AR, Nurlanov MT (1996) Selevye Javlenija seismoaktivnykh Territorij Kazakhstana. Akademiya Nauk, AlmatyGoogle Scholar
  63. Medeuov A, Kolotilin NF, Keremkulov VA (1993) Seli Kazakhstana. Gylym, Almaty, p 160Google Scholar
  64. Mergili M, Schneider D, Worni R, Schneider J (2011) Glacial lake outburst floods in the Pamir of Tajikistan: challenges in prediction and modelling. In: 5th international conference on debris-flow hazards mitigation: mechanics, prediction and assessment, University of Padova, Italy, 14–17 June 2011, acceptedGoogle Scholar
  65. Narama C, Severskiy I, Yegorov A (2009) Current state of glacier changes, glacial lakes, and outburst floods in the Ile Ala-Tau and Kungoy Ala-Too ranges, northern Tien Shan mountains. Ann Hokkaido Geogr 84:22–32Google Scholar
  66. Narama C, Duishonakunov M, Kääb A, Daiyrov M, Abdrakhmatov K (2010a) The 24 July 2008 outburst flood at the western Zyndan glacier lake and recent regional changes in glacier lakes of the Teskey Ala-Too range, Tien Shan, Kyrgyzstan. Nat Hazard Earth Syst Sci 10:647–659CrossRefGoogle Scholar
  67. Narama C, Kääb A, Duishonakunov M, Abdrakhmatov K (2010b) Spatial variability of recent glacier area changes in the Tien Shan mountains, central Asia, using Corona (1970), Landsat (2000), and ALOS (2007) satellite data. Glob Planet Change 71(1–2):42–54CrossRefGoogle Scholar
  68. Passmore DG, Harrison S, Winchester V, Rae A, Severskiy IV, Pimankina NV (2008) Late Holocene debris flows and valley floor development in the northern Zailiiskiy Alatau, Tien Shan mountains, Kazakhstan. Arctic Antarct Alp Res 40(3):548–560Google Scholar
  69. Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2002) The new remote sensing derived swiss glacier inventory: I. Methods. Ann Glaciol 34:355–361CrossRefGoogle Scholar
  70. Plehanov PA, Sudakov PA, Tokmagambetov GA (1975) Prichiny obrazovaniya I processy formirovaniya selevogo potoka na reke Malaya Almatinka 15 iyulya 1973 g. Vestnik AN KazSSR 4:24–25Google Scholar
  71. Popov NV (1984a) O seleopasnyh ozerah glacialnoi zony Zailiyskogo Alatau. Problemy protivoselevyh meropriy. Alma-Ata: 96–105Google Scholar
  72. Popov NV (1984b) O glyacialnom selevom potoke 23 Iyulya, 1980 goda v basseine reki Kaskelen Zailiyskogo Alatau. Problemy protivoselevyh meropriyatiy. Alma-Ata: 222–230Google Scholar
  73. Popov NV (1988) Die Kontrolle gefährlicher Gletscherseen im nördlichen Tienschan. In: Proceedings of the international symposium interpraevent, vol 4, pp 29–41Google Scholar
  74. Quincey DJ, Lucas RM, Richardson SD, Glasser NF, Hambrey MJ, Reynolds JM (2005) Optical remote sensing techniques in high-mountain environments: application to glacial hazards. Prog Phys Geogr 29(4):475–505CrossRefGoogle Scholar
  75. Quincey DJ, Richardson SD, Luckman A, Lucas RM, Reynolds JM, Hambrey MJ, Glasser NF (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Glob Planet Change 56(1–2):137–152CrossRefGoogle Scholar
  76. Reynolds JM (2000) On the formation of supraglacial lakes on debris-covered glaciers. IAHS publication, vol 264 (= Debris-covered Glaciers), pp 153–161Google Scholar
  77. Richardson SD, Reynolds JM (2000) An overview of glacial hazards in the Himalayas. Quat Int 65/66(1):31–47CrossRefGoogle Scholar
  78. Salzmann N, Kääb A, Huggel C, Allgo¨wer B, Haeberli W (2004) Assessment of the hazard potential of ice avalanches using remote sensing and GIS-modelling. Norsk Geograf Tidsskrift 58:74–84CrossRefGoogle Scholar
  79. Scherler D, Leprince S, Strecker MR (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery—accuracy improvement and quality assessment. Remote Sens Environ 112(10):3806–3819CrossRefGoogle Scholar
  80. Schneider JF (2004) Risk assessment of remote geohazards in western Pamir, GBAO, Tajikistan. In: Proceedings of the international conference on high mountain hazard prevention, Vladikavkaz Moscow, 23–26 June 2004, pp 252–255Google Scholar
  81. Severskiy IV, Zichu X (eds) (2000) Snow cover and avalanches in the Tien Shan mountains. VAC Publishing House, AlmatyGoogle Scholar
  82. Shusharin VI, Popov NV (1981) Razvitie selevogo potoka v basseine reki Sredniy Talgar—problemy protivoselevyh meropriyatiy. Alma-Ata: 153–157Google Scholar
  83. Solomina ON, Barry R, Bodnya M (2004) The retreat of Tien Shan glaciers (Kygryzstan) since the little ice age estimated from aerial photographs, lichenometric and historical data. Geograf Ann Ser A 86(2):205–216CrossRefGoogle Scholar
  84. Storm AL, Korup O (2006) Extremly large rockslides and rock avalaches in the Tien Shan mountains, Kyrgyzstan. Landslides 3:125–136CrossRefGoogle Scholar
  85. Tokmagambetov TG (2009) The moraine-dammed glacial lakes current state in the Iliy Alatau. In: Materials of the international conference on mitigation of natural hazards in mountain areas, 15–18 Sept 2009, Bishkek, pp 82–83Google Scholar
  86. Utirov CU (1978) Seismic deformations. Geological principles of the seismic zoning of the Issuk-Kul depression. Ilm, Frunze, pp 91–111Google Scholar
  87. Vuichard D, Zimmermann M (1987) The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal: cause and consequences. Mt Res Dev 7:91–110CrossRefGoogle Scholar
  88. Wessels R, Kargel J, Kieffer H (2002) ASTER measurement of supraglacial lakes in the mount Everest region of the Himalaya. Ann Glaciol 34:399–408CrossRefGoogle Scholar
  89. Woerd J, van der Owen LA, Tapponnier P, Xu X, Kervyn F, Finkel RC, Barnard PL (2004) Giant, _M8 earthquake triggered ice avalanches in the eastern Kunlun Shan, northern Tibet: characteristics, nature and dynamics. Geol Soc Am Bull 116(3):394–406CrossRefGoogle Scholar
  90. Yadav RR, Kulieshhius P (1992) Dating of Earthquakes: tree ring responses to the catastrophic earth quake of 1887 in Alma Ata, Kasakhstan. Geograph J 158:295–299CrossRefGoogle Scholar
  91. Yegorov A (2007) Analyse und Bewertung von Naturgefahren als Grundlage für ein nachhaltiges Naturgefahrenmanagment in Gebirgssystemen SO-Kasachstans am Beispiel des Ile-Alatau. Dissertation, LMU MünchenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tobias Bolch
    • 1
    • 2
    Email author
  • Juliane Peters
    • 2
  • Alexandr Yegorov
    • 3
  • Biswajeet Pradhan
    • 4
  • Manfred Buchroithner
    • 2
  • Victor Blagoveshchensky
    • 3
  1. 1.Geographisches InstitutUniversität ZürichZürichSwitzerland
  2. 2.Institut für KartographieTechnische Universität DresdenDresdenGermany
  3. 3.Institute of Geography of Ministry of Education and Sciences of the Republic of KazakhstanAlmatyKazakhstan
  4. 4.Institute of Advanced TechnologyUniversity Putra Malaysia (UPM)SerdangMalaysia

Personalised recommendations