Models of Visually Guided Routes in Ants: Embodiment Simplifies Route Acquisition

  • Bart Baddeley
  • Paul Graham
  • Andrew Philippides
  • Philip Husbands
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7102)


It is known that ants learn long visually-guided routes through complex terrain. However, the mechanisms by which visual information is first learnt and then used to control a route direction are not well understood. In this paper we investigate whether a simple approach, involving scanning the environment and moving in the direction that appears most familiar, can provide a model of visually guided route learning in ants. The specific embodiment of an ant’s visual system means that movement and viewing direction are tightly coupled, a familiar view specifies a familiar direction of viewing and thus a familiar movement to make. We show the feasibility of our approach as a model of ant-like route acquisition by learning non-trivial routes through a simulated environment firstly using the complete set of views experienced during learning and secondly using an approximation to the distribution of these views.


Insect Navigation Route Learning View-Based Homing Restricted Boltzmann Machine Generative Models Autonomous Robotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cartwright, B.A., Collett, T.S.: Landmark learning in bees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 151(4), 521–543 (1983)CrossRefGoogle Scholar
  2. 2.
    Cheng, K., Narendra, A., Sommer, S., Wehner, R.: Travelling in clutter: Navigation in Central Australian desert ant Melophorus bagoti. Behavioural Processes 80(3), 261–268 (2009)CrossRefGoogle Scholar
  3. 3.
    Collett, M., Collett, T.S., Bisch, S., Wehner, R.: Local and global vectors in desert ant navigation. Nature 394, 269–272 (1998)CrossRefGoogle Scholar
  4. 4.
    Collett, T.S., Dillmann, E., Giger, A., Wehner, R.: Visual landmarks and route following in desert ants. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 170(4), 435–442 (1992)CrossRefGoogle Scholar
  5. 5.
    Collett, T.S., Graham, P., Harris, R.A.: Novel landmark-guided routes in ants. Journal of Exp. Biol. 210(12), 2025–2032 (2007)CrossRefGoogle Scholar
  6. 6.
    Durier, V., Graham, P., Collett, T.S.: Snapshot memories and landmark guidance in wood ants. Current Biology 13(18), 1614–1618 (2003)CrossRefGoogle Scholar
  7. 7.
    Franz, M.O., Schölkopf, B., Georg, P., Mallot, H.A., Bülthoff, H.H.: Learning View Graphs for Robot Navigation. Autonomous Robots 5, 111–125 (1998)CrossRefGoogle Scholar
  8. 8.
    Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Where did I take that snapshot? Scene-based Homing by Image Matching. Biological Cybernetics 79, 191–202 (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Graham, P., Collett, T.S.: View-based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. J. Exp. Biol. 205(16), 2499–2509 (2002)Google Scholar
  10. 10.
    Graham, P., Collett, T.S.: Bi-directional route learning in wood ants. J. Exp. Biol. 209(18), 3677–3684 (2006)CrossRefGoogle Scholar
  11. 11.
    Graham, P., Cheng, K.: Ants use the panoramic skyline as a visual cue during navigation. Current Biology 19(20), R935–R937 (2009)CrossRefGoogle Scholar
  12. 12.
    Graham, P., Philippides, A., Baddeley, B.: Animal Cognition: Multi-modal Interactions in Ant Learning. Current Biology 20, R639–R640(2010)CrossRefGoogle Scholar
  13. 13.
    Hinton, G.: Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation 14, 1771–1800 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hinton, G.: A Practical Guide to Training Restricted Boltzmann Machines. University of Toronto Technical Report 2010-003 (2010)Google Scholar
  15. 15.
    Kohler, M., Wehner, R.: Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors? Neurobiology of Learning and Memory 83(1), 1–12 (2005)CrossRefGoogle Scholar
  16. 16.
    Smith, L., Philippides, A., Graham, P., Baddeley, B., Husbands, P.: Linked Local Navigation for Visual Route Guidance. Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems 15(3), 257–271 (2007)Google Scholar
  17. 17.
    Smith, L., Philippides, A., Graham, P., Husbands, P.: Linked Local Visual Navigation and Robustness to Motor Noise and Route Displacement. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 179–188. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Stürzl, W., Zeil, J.: Depth, contrast and view-based homing in outdoor scenes. Biological Cybernetics 96, 519–531 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Tieleman, T., Hinton, G.: Using Fast Weights to Improve Persistent Contrastive Divergence. In: Proceedings of the 26th International Conference on Machine Learning, Montreal, Canada (2009)Google Scholar
  20. 20.
    Wehner, R., Raber, F.: Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Cellular and Molecular Life Sciences (CMLS) 35(12), 1569–1571 (1979)CrossRefGoogle Scholar
  21. 21.
    Wehner, R.: Visual navigation in insects: coupling of egocentric and geocentric information. Journal of Experimental Biology 199(1), 129–140 (1996)Google Scholar
  22. 22.
    Wehner, R., Boyer, M., Loertscher, F., Sommer, S., Menzi, U.: Ant Navigation: One-Way routes Rather Than Maps. Current Biology 16(1), 75–79 (2006)CrossRefGoogle Scholar
  23. 23.
    Zeil, J., Hofmann, M.I., Chahl, J.S.: Catchment areas of panoramic snapshots in outdoor scenes. Journal of the Optical Society of America A 20(3), 450–469 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bart Baddeley
    • 1
  • Paul Graham
    • 1
  • Andrew Philippides
    • 1
  • Philip Husbands
    • 1
  1. 1.Centre for Computational Neuroscience and RoboticsUniversity of SussexBrightonUK

Personalised recommendations