Advertisement

Models of Visually Guided Routes in Ants: Embodiment Simplifies Route Acquisition

  • Bart Baddeley
  • Paul Graham
  • Andrew Philippides
  • Philip Husbands
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7102)

Abstract

It is known that ants learn long visually-guided routes through complex terrain. However, the mechanisms by which visual information is first learnt and then used to control a route direction are not well understood. In this paper we investigate whether a simple approach, involving scanning the environment and moving in the direction that appears most familiar, can provide a model of visually guided route learning in ants. The specific embodiment of an ant’s visual system means that movement and viewing direction are tightly coupled, a familiar view specifies a familiar direction of viewing and thus a familiar movement to make. We show the feasibility of our approach as a model of ant-like route acquisition by learning non-trivial routes through a simulated environment firstly using the complete set of views experienced during learning and secondly using an approximation to the distribution of these views.

Keywords

Insect Navigation Route Learning View-Based Homing Restricted Boltzmann Machine Generative Models Autonomous Robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cartwright, B.A., Collett, T.S.: Landmark learning in bees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 151(4), 521–543 (1983)CrossRefGoogle Scholar
  2. 2.
    Cheng, K., Narendra, A., Sommer, S., Wehner, R.: Travelling in clutter: Navigation in Central Australian desert ant Melophorus bagoti. Behavioural Processes 80(3), 261–268 (2009)CrossRefGoogle Scholar
  3. 3.
    Collett, M., Collett, T.S., Bisch, S., Wehner, R.: Local and global vectors in desert ant navigation. Nature 394, 269–272 (1998)CrossRefGoogle Scholar
  4. 4.
    Collett, T.S., Dillmann, E., Giger, A., Wehner, R.: Visual landmarks and route following in desert ants. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 170(4), 435–442 (1992)CrossRefGoogle Scholar
  5. 5.
    Collett, T.S., Graham, P., Harris, R.A.: Novel landmark-guided routes in ants. Journal of Exp. Biol. 210(12), 2025–2032 (2007)CrossRefGoogle Scholar
  6. 6.
    Durier, V., Graham, P., Collett, T.S.: Snapshot memories and landmark guidance in wood ants. Current Biology 13(18), 1614–1618 (2003)CrossRefGoogle Scholar
  7. 7.
    Franz, M.O., Schölkopf, B., Georg, P., Mallot, H.A., Bülthoff, H.H.: Learning View Graphs for Robot Navigation. Autonomous Robots 5, 111–125 (1998)CrossRefGoogle Scholar
  8. 8.
    Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Where did I take that snapshot? Scene-based Homing by Image Matching. Biological Cybernetics 79, 191–202 (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Graham, P., Collett, T.S.: View-based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. J. Exp. Biol. 205(16), 2499–2509 (2002)Google Scholar
  10. 10.
    Graham, P., Collett, T.S.: Bi-directional route learning in wood ants. J. Exp. Biol. 209(18), 3677–3684 (2006)CrossRefGoogle Scholar
  11. 11.
    Graham, P., Cheng, K.: Ants use the panoramic skyline as a visual cue during navigation. Current Biology 19(20), R935–R937 (2009)CrossRefGoogle Scholar
  12. 12.
    Graham, P., Philippides, A., Baddeley, B.: Animal Cognition: Multi-modal Interactions in Ant Learning. Current Biology 20, R639–R640(2010)CrossRefGoogle Scholar
  13. 13.
    Hinton, G.: Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation 14, 1771–1800 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hinton, G.: A Practical Guide to Training Restricted Boltzmann Machines. University of Toronto Technical Report 2010-003 (2010)Google Scholar
  15. 15.
    Kohler, M., Wehner, R.: Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors? Neurobiology of Learning and Memory 83(1), 1–12 (2005)CrossRefGoogle Scholar
  16. 16.
    Smith, L., Philippides, A., Graham, P., Baddeley, B., Husbands, P.: Linked Local Navigation for Visual Route Guidance. Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems 15(3), 257–271 (2007)Google Scholar
  17. 17.
    Smith, L., Philippides, A., Graham, P., Husbands, P.: Linked Local Visual Navigation and Robustness to Motor Noise and Route Displacement. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 179–188. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Stürzl, W., Zeil, J.: Depth, contrast and view-based homing in outdoor scenes. Biological Cybernetics 96, 519–531 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Tieleman, T., Hinton, G.: Using Fast Weights to Improve Persistent Contrastive Divergence. In: Proceedings of the 26th International Conference on Machine Learning, Montreal, Canada (2009)Google Scholar
  20. 20.
    Wehner, R., Raber, F.: Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Cellular and Molecular Life Sciences (CMLS) 35(12), 1569–1571 (1979)CrossRefGoogle Scholar
  21. 21.
    Wehner, R.: Visual navigation in insects: coupling of egocentric and geocentric information. Journal of Experimental Biology 199(1), 129–140 (1996)Google Scholar
  22. 22.
    Wehner, R., Boyer, M., Loertscher, F., Sommer, S., Menzi, U.: Ant Navigation: One-Way routes Rather Than Maps. Current Biology 16(1), 75–79 (2006)CrossRefGoogle Scholar
  23. 23.
    Zeil, J., Hofmann, M.I., Chahl, J.S.: Catchment areas of panoramic snapshots in outdoor scenes. Journal of the Optical Society of America A 20(3), 450–469 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bart Baddeley
    • 1
  • Paul Graham
    • 1
  • Andrew Philippides
    • 1
  • Philip Husbands
    • 1
  1. 1.Centre for Computational Neuroscience and RoboticsUniversity of SussexBrightonUK

Personalised recommendations