BioMotionBot – A New 3D Robotic Manipulandum with End-Point Force Control

  • Volker Bartenbach
  • Klaus Wilging
  • Wolfgang Burger
  • Thorsten Stein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7102)


In this paper we present the design of a new 3D robotic manipulandum that will be used in human motor-control research and additionally enables physiotherapists to design tailor-made robotic therapies. Moreover, it offers the opportunity to develop completely new types of movement-specific coordination and condition training programs in sports. The presented manipulandum has a special designed 3D kinematics that allows movements in 3D space while maintaining its orientation. The paper contains an overview of the mechanical design, the electronic components, the user interface, the design of the control system as well as a first performance test.


robotic manipulandum motor learning rehabilitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kawato, M.: Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9, 718–727 (1999)CrossRefGoogle Scholar
  2. 2.
    Lackner, J.R., DiZio, P.: Motor control and learning in altered dynamic environments. Current Opinion in Neurobiology 15, 653–659 (2005)CrossRefGoogle Scholar
  3. 3.
    Scott, S.H., Norman, K.E.: Computational approaches to motor control and their potential role for interpreting motor dysfunction. Current Opinion in Neurology 16, 693–698Google Scholar
  4. 4.
    Smith, M.A., Brandt, J., Shadmehr, R.: Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403, 544–549 (2000)CrossRefGoogle Scholar
  5. 5.
    Kwakkel, G., Kollen, B., Krebs, H.: Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review. Neurorehabilitation and Neural Repair 22, 111–121 (2008)CrossRefGoogle Scholar
  6. 6.
    Howard, I.S., Ingram, J.N., Wolpert, D.M.: A modular planar robotic manipulandum with end-point torque control. Journal of Neuroscience Methods 181, 199–211 (2009)CrossRefGoogle Scholar
  7. 7.
    Shadmehr, R., Mussa-Ivaldi, F.A.: Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience 14(5), 3208–3224 (1994)Google Scholar
  8. 8.
    Stock, M., Miller, K.: Optimal kinematic design of spatial parallel manipulators: application to linear delta robot. Journal of Mechanical Design 125, 292–301 (2003)CrossRefGoogle Scholar
  9. 9.
    Van Der Linde, R.Q., Lammertse, P.: HapticMaster–a generic force controlled robot for human interaction. Industrial Robot: An International Journal 30(6), 515–524 (2003)CrossRefGoogle Scholar
  10. 10.
    Ottnad, J.: Topologieoptimierung von Bauteilen in dynamischen und geregelten Systemen, Dissertation (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Volker Bartenbach
    • 1
  • Klaus Wilging
    • 1
  • Wolfgang Burger
    • 1
  • Thorsten Stein
    • 2
    • 3
  1. 1.IPEK – Institute of Product EngineeringKarlsruhe Institute of Technology (KIT)Germany
  2. 2.Department of Sport and Sport Science, BioMotion CenterKarlsruhe Institute of Technology (KIT)Germany
  3. 3.YIG “Computational Motor Control and Learning”Karlsruhe Institute of Technology (KIT)Germany

Personalised recommendations