Learning Intelligent Controllers for Path-Following Skills on Snake-Like Robots

  • Francisco Javier Marín
  • Jorge Casillas
  • Manuel Mucientes
  • Aksel Andreas Transeth
  • Sigurd Aksnes Fjerdingen
  • Ingrid Schjølberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7102)

Abstract

Multi-link wheeled robots provide interesting opportunities within many areas such as inspection and maintenance of pipes or vents. A key functionality in order to perform such operations, is that the robot can follow a predefined path fast and accurately. In this paper we present an algorithm to learn the path-following behavior for a set of motion primitives. These primitives could then be used by a planner in order to construct longer paths. The algorithm is divided into two steps: an example-based stage for controller learning, and a controller tuning stage, based on an objective function and simulations of the path-following process. The path-following controllers have been tested with a simulator of a multi-link robot in several complex paths, showing an excellent performance.

Keywords

Path-following snake-like robot multi-link mobile robot fuzzy control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lapierre, L., Zapata, R., Lepinay, P.: Combined Path-following and Obstacle Avoidance Control of a Wheeled Robot. The International Journal of Robotics Research 26(4), 361–375 (2007)CrossRefGoogle Scholar
  2. 2.
    Ashoorirad, M., Barzamini, R., Afshar, A., Jouzdani, J.: Model Reference Adaptive Path Following for Wheeled Mobile Robots. In: International Conference on Information and Automation (ICIA 2006), pp. 289–294 (December 2006)Google Scholar
  3. 3.
    Campani, M., Capezio, F., Rebora, A., Sgorbissa, A., Zaccaria, R.: A Minimalist Approach to Path Following among Unknown Obstacles. In: IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS 2010), pp. 3604–3610 (October 2010)Google Scholar
  4. 4.
    Liu, N.: Intelligent Path Following Method for Nonholonomic Robot Using Fuzzy Control. In: Second International Conference on Intelligent Networks and Intelligent Systems, ICINIS 2009, pp. 282–285 (November 2009)Google Scholar
  5. 5.
    Fierro, R., Lewis, F.L.: Control of A Nonholonomic Mobile Robot Using Neural Networks. IEEE Transactions on Neural Networks 9(4), 589–600 (1998)CrossRefGoogle Scholar
  6. 6.
    Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially Constrained Mobile Robot Motion Planning in State Lattices. Journal of Field Robotics 26(3), 308–333 (2009)CrossRefGoogle Scholar
  7. 7.
    Fjerdingen, S.A., Liljebäck, P., Transeth, A.A.: A Snake-Like Robot for Internal Inspection of Complex Pipe Structures. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, St. Louis, USA, pp. 5665–5671 (October 2009)Google Scholar
  8. 8.
    Murugendran, B., Transeth, A.A., Fjerdingen, S.A.: Modeling and Path-Following for a Snake-Robot with Active Wheels. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, St. Louis, USA, pp. 3643–3650 (October 2009)Google Scholar
  9. 9.
    Altafini, C.: Some properties of the general n-trailer. International Journal of Control 74(4), 409–424 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mucientes, M., Casillas, J.: Quick Design of Fuzzy Controllers With Good Interpretability in Mobile Robotics. IEEE Transactions on Fuzzy Systems 15(4), 636–651 (2007)CrossRefGoogle Scholar
  11. 11.
    Casillas, J.: Embedded genetic learning of highly interpretable fuzzy partitions. In: Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference (IFSA-EUSFLAT 2009), Lisbon, Portugal, pp. 1631–1636 (2009)Google Scholar
  12. 12.
    Open Dynamics Engine, http://www.ode.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francisco Javier Marín
    • 1
  • Jorge Casillas
    • 1
  • Manuel Mucientes
    • 2
  • Aksel Andreas Transeth
    • 3
  • Sigurd Aksnes Fjerdingen
    • 3
  • Ingrid Schjølberg
    • 3
  1. 1.University of GranadaGranadaSpain
  2. 2.University of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.SINTEF ICT Applied CyberneticsTrondheimNorway

Personalised recommendations