Intelligent Control Design in Robotics and Rehabilitation

  • Petko Kiriazov
  • Gergana Nikolova
  • Ivanka Veneva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7102)

Abstract

For control purposes in robotics or rehabilitation, we may use properly simplified dynamic models with a reduced number of degrees of freedom. First, we define a set of variables that best characterize its dynamic performance in the required motion task. Second, driving forces/torques are properly assigned in order to achieve the required dynamic performance in an efficient way. The usual performance requirements are for positioning accuracy, movement execution time, and energy expenditure. We consider complex biomechatronic systems (BMS) like human with active orthosis or robotic arm that have to perform two main types of motion tasks: goal-directed movements and motion/posture stabilization. We propose new design concepts and criteria for BMS based on necessary and sufficient conditions for their robust controllability. Using simplified, yet realistic, models, we give several important examples in robotics and rehabilitation to illustrate the main features and advantages of our approach.

Keywords

rehabilitation robots control design learning optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fisher, B.E., Sullivan, K.J.: Activity-dependent factors affecting post-stroke functional outcomes. Top Stroke Rehabil 8(3), 31–44 (2001)CrossRefGoogle Scholar
  2. 2.
    Teasell, R., Bayona, N., Salter, K., et al.: Progress in clinical neurosciences: stroke recovery and rehabilitation. Can J. Neurol. Sci. 33(4), 357–364 (2006)CrossRefGoogle Scholar
  3. 3.
    Kiriazov, P.: Control Strategy for Efficient Motion Rehabilitation. In: Proc. 2nd European Conference, Technically Assisted Rehabilitation, March 18-19, pp. 1–4 (2009), http://www.tar-conference.eu/tar-conference-archive/tar-2009-1; Proc. on CD ISSN 18624871
  4. 4.
    Nikolova, G., Toshev, Y.: Zlatov. N., Yordanov. Y., Humanoid robot based on 3D biomechanical model. In: Proceedings of the International Symposium on Robotics and Automation, Toluca, Mexico (2002)Google Scholar
  5. 5.
    Nikolova, G., Toshev, Y.: Estimation of male and female body segment parameters of the Bulgarian population using a 16-segmental mathematical model. Journal of Biomechanics 40(16), 3700–3707 (2007)CrossRefGoogle Scholar
  6. 6.
    Lunze, J.: Feedback Control of Large-Scale Systems. Prentice-Hall, UK (1992)MATHGoogle Scholar
  7. 7.
    Kiriazov, P.: Robust Decentralized Control of Mechanical Systems. In: van Campen, D. (ed.) Solid Mechanics and its Applications, vol. 52, pp. 175–182. Kluwer Acad. Publ. (1997)Google Scholar
  8. 8.
    Kiriazov, P.: Efficient Approach For Dynamic Parameter Identification and Control Design of Structronic Systems. In: Gabbert, U., Tzou, H. (eds.) Solid Mechanics and its Applications, vol. 89, pp. 323–330. Kluwer Publ. (2001)Google Scholar
  9. 9.
    Kiriazov, P.: Efficient Learning Control and Adaptation in Dynamic Locomotion. In: Proc. 3rd Int. Symp. Adaptive Motion in Animals and Machines, Ilmenau, Germany, pp.1–8 (2005) ISBN: 3932633997 Google Scholar
  10. 10.
  11. 11.
    Park, S., Horak, F.B., Kuo, A.D.: Postural feedback responses scale with biomechanicalconstraints in human standing. Exp. Brain Res. 154, 417–427 (2004)CrossRefGoogle Scholar
  12. 12.
    Lewis, C.L., Ferris, D.P.: Walking with increased ankle push off decreases hip moments. Journal of Biomechanics 41(10), 2082–2089 (2008)CrossRefGoogle Scholar
  13. 13.
    Timmermans, A., Seelen, H., Willmann, R., Kingma, H.: Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J. NeuroEngineering and Rehabilitation 6, 1 (2009), http://www.jneuroengrehab.com/content/pdf/1743-0003-6-1.pdf CrossRefGoogle Scholar
  14. 14.
    Kiriazov, P., Nikolova, G.S.: Motor control strategy for efficient neurorehabilitation. Neurorehabilitation 4(1-2), 3–6 (2010)Google Scholar
  15. 15.
    Kiriazov, P.: Optimal Robust Controllers for Multibody Systems. In: Ulbrich, H., Günthner, W. (eds.) Solid Mechanics and its Applications, vol. 130, pp. 183–192. Springer-Verlag GmbH, Heidelberg (2005)Google Scholar
  16. 16.
    Schiehlen, W. (ed.): Multibody Systems Handbook. Springer, Berlin (1990)MATHGoogle Scholar
  17. 17.
    Veneva, I., Toshev, Y.: Control Algorithm For Ankle-Foot Orthosis and Applications. In: Proc. the 9th International Robotics Conference, Varna, Bulgaria, pp. 225–230 (2007)Google Scholar
  18. 18.
    Veneva, I., Boiadjiev, G.: Control System for Data Acquisition and Processing of Ankle-Foot Orthosis. In: Proceedings of the 9th IFAC Symposium on Robot Control, SYROCO 2009, Gifu, Japan, September 9-12, pp. 745–750 (2009)Google Scholar
  19. 19.
    Veneva, I.: Intelligent device for control of active ankle-foot orthosis. In: Proceedings of the 7th IASTED International Conference on Biomedical Engineering, BioMed 2010, Innsbruck, Austria, February 17-19, pp. 100–105. Acta Press (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Petko Kiriazov
    • 1
  • Gergana Nikolova
    • 1
  • Ivanka Veneva
    • 1
  1. 1.Institute of MechanicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations