Artificial Cognition in Autonomous Assembly Planning Systems

  • Christian Buescher
  • Marcel Mayer
  • Daniel Schilberg
  • Sabina Jeschke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7102)


Cognition is of great interest in several scientific disciplines. The issue is to transfer human cognitive capabilities to technical systems and so generate artificial cognition. But while robots are learning to communicate or behave socially only a few examples for applications in production engineering and especially in assembly planning exist. In this field cognitive systems can achieve a technological advance by means of self-optimization and the associated autonomous adaption of the system’s behavior to external goal states. In this paper cognitive technical systems and their software architectures in general are discussed as well as several assembly planning systems. A precise autonomous assembly planning system and its implementation of cognitive capabilities is presented in detail.


Cognition Self-Optimization Cognitive Technical Systems Assembly Planning Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schlick, C., Reuth, R., Luczak, H.: A Comparative Simulation Study of Work Processes in Autonomous Production Cells. Human Factors and Ergonomics in Manufacturing, West Sussex 12(1), 31–54 (2002)CrossRefGoogle Scholar
  2. 2.
    Zaeh, M.F., Wiesbeck, M.: A Model for Adaptively Generating Assembly Instructions Using State-based Graphs. In: The 41st CIRP Conference on Manufacturing Systems, Tokyo, Japan (2008)Google Scholar
  3. 3.
    Matlin, M.W.: Cognition, 7th edn. John Wiley & Sons, Hoboken (2008)Google Scholar
  4. 4.
    Strohner, H.: Kognitive Systeme – Eine Einführung in die Kognitionswissenschaft. Westdeutscher Verlag, Opladen (1995)Google Scholar
  5. 5.
    Zimbardo, P., Gerrig, R.: Psychology and Life. Pearson, Boston (2005)Google Scholar
  6. 6.
    Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges. Journal of Cognitive Systems Research 10(2), 141–160 (2009)CrossRefGoogle Scholar
  7. 7.
    Strube, G.: Modelling Motivation and Action Control in Cognitive Sytems. In: Schmid, U., Krems, J.F., Wysocki, F. (eds.) Mind Modelling: A Cognitive Science Approach to Reasoning, Learning and Discovery, Papst, Lengerich, pp. 89–108 (1998)Google Scholar
  8. 8.
    Bannat, A., Bautze, T., Beetz, M., Blume, J., Diepold, K., Ertelt, C., Geiger, F., Gmeiner, T., Gyger, T., Knoll, A., Lau, C., Lenz, C., Ostgathe, M., Reinhart, G., Roesel, W., Ruehr, T., Schuboe, A., Shea, K., Stork, I., Stork, S., Tekouo, W., Wallhoff, F., Wiesbeck, M., Zaeh, M.F.: Artificial Cognition in Production Systems. IEEE Transactions on Automation Science and Engineering 8(1), 148–174 (2011)CrossRefGoogle Scholar
  9. 9.
    Collaborative Research Centre 614, Self -optimizing concepts and structures in mechanical engineering (CRC 614) (March 23, 2011),
  10. 10.
    Frank, U., Giese, H., Klein, F., Oberschelp, O., Schmidt, A., Schulz, B., Vöcking, H., Witting, K.: Selbstoptimierende Systeme des Maschinenbaus - Definitionen und Konzepte. Bonifatius GmbH (2004)Google Scholar
  11. 11.
    Gat, E.: On Three-Layer Architectures. In: Kortenkamp, D., Bonnasso, R., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots, pp. 195–211 (1998)Google Scholar
  12. 12.
    Karim, S., Sonenberg, L., Tan, A.-H.: A Hybrid Architecture Combining Reactive Plan Execution and Reactive Learning. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 200–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education (2003)Google Scholar
  14. 14.
    Paetzold, K.: On the importance of a functional description for the development of cognitive technical systems. In: International Design Conference 2006, Dubrovnik (2006)Google Scholar
  15. 15.
    Hauck, E., Gramatke, A., Henning, K.: A Software Architecture for Cognitive Technical Systems for an Assembly Task in a Production Environment. In: Rodic, A. (ed.) Automation and Control, Theory and Practice, pp. 13–28. In-Tech, Vukovar (2010)Google Scholar
  16. 16.
    Stork, S., Schuboe, A.: Human cognition in manual assembly: Theories and applications. Advanced Engineering Informatics 24, 320–328 (2010)CrossRefGoogle Scholar
  17. 17.
    Putzer, H.J.: Ein uniformer Architekturansatz für Kognitive Systeme und seine Umsetzung in ein operatives Framework. Verlag Dr. Köster, Berlin (2004)Google Scholar
  18. 18.
    Onken, R., Schulte, A.: System-Ergonomic Design of Cognitive Automation. Springer, Berlin (2010)CrossRefGoogle Scholar
  19. 19.
    Thrun, S., Montemerlo, N., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., et al.: Stanley: The Robot That Won the DARPA Grand Challenge. In: The 2005 DARPA Grand Challenge, Springer Tracts in Advanced Robotics, vol. 36, pp. 1–43 (2007)Google Scholar
  20. 20.
    Loosen, P., Schmitt, R., Brecher, C., Müller, R., Funck, M., Gatej, A., Morasch, V., Pavim, A., Pyschny, N.: Self-optimizing assembly of laser systems. Production Engineering Research and Development 5(4), 443–451 (2011)CrossRefGoogle Scholar
  21. 21.
    Müller, R., Esser, M., Janssen, M., Vette, M., Corves, B., Huesing, M., Riedel, M.: Reconfigurable handling system. Production Engineering Research and Development 5(4), 453–461 (2011)CrossRefGoogle Scholar
  22. 22.
    Cluster of Excellence Cognition in Technical Systems(CoTeSys) (March 23, 2011),
  23. 23.
    Kain, S., Ding, H., Schiller, F., Stursberg, O.: Controller Architecture for Safe Cognitive Technical Systems. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680, pp. 518–531. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Hoffmann, J.: FF: The Fast-Forward Planning System. The AI Magazine 22 (2001)Google Scholar
  25. 25.
    Hoffmann, J., Brafman, R.: Contingent Planning via Heuristic Forward Search with Implicit Belief States. In: Proceedings of the 15th International Conference on Automated Planning and Scheduling, Monterey, CA, USA (2005)Google Scholar
  26. 26.
    Kaufman, S., Wilson, R., Jones, R., Calton, T., Ames, A.: The Archimedes 2 mechanical assembly planning system. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3361–3368 (1996)Google Scholar
  27. 27.
    Thomas, U., Molkenstruck, S., Iser, R., Wahl, F.M.: Multi Sensor Fusion in Robot Assembly Using Particle Filters. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3837–3843 (2007)Google Scholar
  28. 28.
    Medellín, H., Corney, J., Ritchie, J.M., Lim, T.: Automatic Generation of Robot and Manual Assembly Plans Using Octrees. Assembly Automation 30(2), 173–183 (2010)CrossRefGoogle Scholar
  29. 29.
    Biswal, B.B., Mishra, D., Dash, P., Choudhury, B.B.: An overview and comparison of four sequence generating methods for robotic assembly. International Journal of Manufacturing Technology and Management 20(1-4), 169–196 (2010)CrossRefGoogle Scholar
  30. 30.
    Hauck, E., Ewert, D., Schilberg, D., Jeschke, S.: Design of a Knowledge Module Embedded in a Framework for a Cognitive System Using the Example of Assembly Tasks. In: Proceedings of the 3rd International Conference on Applied Human Factors and Ergonomics. Hrsg. v. CRC Press / Taylor & Francis, Ltd., Miami (2010)Google Scholar
  31. 31.
    Gausemeier, J., Rammig, F.J., Schäfer, W. (eds.): Selbstoptimierende Systeme des Maschinenbaus: Definitionen, Anwendungen, Konzepte. Westfalia, Paderborn (2009)Google Scholar
  32. 32.
    Ewert, D., Thelen, S., Kunze, R., Mayer, M., Schilberg, D., Jeschke, S.: A Graph Based Hybrid Approach of Offline Pre-planning and Online Re-planning for Efficient Assembly under Realtime Constraints. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds.) ICIRA 2010, Part II. LNCS (LNAI), vol. 6425, pp. 44–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Kempf, T., Herfs, W., Brecher, C.: SOAR-based Sequence Control for a Flexible Assembly Cell. In: Proceedings of the 2009 IEEE Conference on Emerging Technologies and Factory Automation, Palma de Mallorca (2009)Google Scholar
  34. 34.
    Mayer, M., Schlick, C., Ewert, D., Behnen, D., Kuz, S., Odenthal, B., Kausch, B.: Automation of robotic assembly processes on the basis of an architecture of human cognition. Production Engineering Research and Development 5(4), 423–431 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Buescher
    • 1
  • Marcel Mayer
    • 2
  • Daniel Schilberg
    • 1
  • Sabina Jeschke
    • 1
  1. 1.Institute of Information Management in Mechanical EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Chair and Institute of Industrial Engineering and ErgonomicsRWTH Aachen UniversityAachenGermany

Personalised recommendations