Dynamic Insertion of Bendable Flat Cables with Variation Based on Shape Returning Points

  • Yuuki Kataoka
  • Shinichi Hirai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7101)

Abstract

This paper focuses on the insertion of flat cables with variance. Manipulation of flat cables must cope with the variance of their deformed shapes. Here we will propose a method to guide the cable end to its desired location using static images of the cable. First, we will introduce the insertion of flat cables. Second, we will describe the concept of a shape returning point, where dynamically deformed shape coincides with static shape of a cable. Based on this concept, we will construct the procedure to determine the trajectory of a robot manipulating cables. We will show experimental results to demonstrate how the proposed procedure works.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor, P.M., et al.: Sensory Robotics for the Handling of Limp Materials. Springer, Heidelberg (1990)MATHGoogle Scholar
  2. 2.
    Hopcroft, J.E., Kearney, J.K., Krafft, D.B.: A Case Study of Flexible Object Manipulation. Int. Journal of Robotics Research 10(1), 41–50 (1991)CrossRefGoogle Scholar
  3. 3.
    Henrich, D., Wörn, H. (eds.): Robot Manipulation of Deformable Objects. Advanced Manufacturing Series. Springer, Heidelberg (2000)Google Scholar
  4. 4.
    Shibata, M., Ota, T., Hirai, S.: Wiping Motion for Deformable Object Handling. In: Proc. IEEE Int. Conf. on Robotics and Automation, Kobe, May 12-17, pp. 134–139 (2009)Google Scholar
  5. 5.
    Zheng, Y.F., Pei, R., Chen, C.: Strategies for Automatic Assembly of Deformable Objects. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2598–2603 (1991)Google Scholar
  6. 6.
    Chen, M.Z., Zheng, Y.F.: Vibration-Free Handling of Deformable Beams by Robot End-Effectors. Journal of Robotic Systems 12(5), 331–347 (1995)CrossRefMATHGoogle Scholar
  7. 7.
    Nakagaki, H., Kitagaki, K., Ogasawara, T., Tsukune, H.: Study of Deformation and Insertion Tasks of a Flexible Wire. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2397–2402 (1997)Google Scholar
  8. 8.
    Yue, S., Henrich, D.: Manipulating Deformable Linear Objects: Sensor-Based Fast Manipulation during Vibration. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2467–2472 (2002)Google Scholar
  9. 9.
    Pai, D.K.: STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21(3), 347–352 (2002)CrossRefGoogle Scholar
  10. 10.
    Wakamatsu, H., Hirai, S.: Static Modeling of Linear Object Deformation Based on Differential Geometry. Int. J. of Robotics Research 23(3), 293–311 (2004)CrossRefGoogle Scholar
  11. 11.
    Wakamatsu, H., Arai, E., Hirai, S.: Fishbone Model for Belt Object Deformation. In: Burgard, W., Brock, O., Stachniss, C. (eds.) Robotics: Science and Systems III, pp. 89–96. The MIT Press (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yuuki Kataoka
    • 1
  • Shinichi Hirai
    • 1
  1. 1.Department of RoboticsRitsumeikan UniversityKusatsuJapan

Personalised recommendations