A Conceptual Agent-Based Planning Algorithm for the Production of Carbon Fiber Reinforced Plastic Aircrafts by Using Mobile Production Units

  • Hamido Hourani
  • Philipp Wolters
  • Eckart Hauck
  • Annika Raatz
  • Sabina Jeschke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7101)


In order to adapt to new modifications of a product, a new production line and competences should be developed. Enhancing this adaptability feature is the target of the presented conceptual approach. This target is achieved by constructing a product, which is fixed at its place, by heterogeneous mobile production units. In this paper, the product is an aircraft which is made of carbon fiber reinforced plastic. Having two types of agents (i.e. planning agents and representative agents), the conceptual approach supports flexibility and parallelism too. The planning agents depend on their general knowledge on the construction progress to provide an abstract plan. The representative agents, which represent the physical production units, depend on their local surrounding environment to draw a concrete plan from the provided abstract plan. Defining the roles of both types of agents are also within the scope of this paper.


Assembly Automation Composite Material Aircraft Multi-Agent System Planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sallinen, M., Heikkila, T., Salmi, T., Kivikunnas, S., Pulkkinen, T.: A Concept for Isles of Automation: Ubiquitous Robot Cell for Flexible Manufacturing. In: International Conference on Control, Automation and Systems, Seoul Korea (2008)Google Scholar
  2. 2.
    Dietrich, F., Löchte, C., Jeschke, S., Raatz, A.: An Agent-Based Concept for Planning and Control of the Production of Carbon Fibre Reinforced Plastics Aircrafts with Mobile Production Units - Technological Requirements, Software Infrastructure and Architecture (to be published)Google Scholar
  3. 3.
    Vasiliev, V., Barynin, V., Rasin, A.: Anisogrid Lattice Structures - Survey of Development and Application. Composite Structures 54(2-3), 361–370 (2001)CrossRefGoogle Scholar
  4. 4.
    Wurman, P., D’Andrea, R., Mountz, M.: Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouse. AI Mag, Jg. 29(1), 9–19 (2007)Google Scholar
  5. 5.
    Nau, D.: Artificial Intelligence and Automation. In: Nof, S. (ed.) Springer Handbook of Automation, pp. 249–266. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Sarh, B., Buttrick, J., Munk, C., Bossi, R.: In: Nof, S. (ed.) Springer Handbook of Automation, pp. 894–909. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Jamshidi, J., Kayani, A., Iravani, P., Maropoulos, P., Summers, M.: Manufacturing and assembly Automation by Integrated Metrology Systems for Aircraft Wing Fabrication. Proceedings of the institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 224, 25–36 (2009)CrossRefGoogle Scholar
  8. 8.
    Nejad, H., Sugimura, N., Iwamura, K., Tanimizu, Y.: Multi-agent Architecture for Dyanmic Incremental Process Planning in the Flexible Manufacturing System. J. Intell. Manuf., Jg. 21(4), 487–499 (2010)CrossRefGoogle Scholar
  9. 9.
    Vrba, P., Radakovič, M., Obitko, M., Mařík, V.: Semantic Extension of Agent-Based Control: The Packing Cell Case Study. In: Mařík, V., Strasser, T., Zoitl, A. (eds.) HoloMAS 2009. LNCS (LNAI), vol. 5696, pp. 47–60. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Dias, B., Zlot, R., Kalra, N., Stentz, A.: Market-Based Multi-robot Coordination: A Survey and Analysis. IEEE 94(7) (2006)Google Scholar
  11. 11.
    Hauck, E., Ewert, D., Schilberg, D., Jeschke, S.: Design of a Knowledge Module Embedded in a Framework for a Cognitive System Using the Example of Assembly Tasks. In: 3rd Int. Conf. on Applied Human Factors and Ergonomics. CRC Press / Taylor & Francis, Ltd., Miami, USA (2010)Google Scholar
  12. 12.
    Hauck, E., Gramatke, A., Henning, K.: A Software Architecture for Cognitive Technical Systems for an Assembly Task in a Production Environment. In: Automation and Control, Theory and Practice, pp. 13–28. In-Teh (2009)Google Scholar
  13. 13.
    Parker, L.: Multiple Mobile Robot Systems. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robots, pp. 921–936. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Parker, L.: ALLIANCE -An Architecture for Fault Tolerant, Cooperative Control of Heterogeneous Mobile Robots. In: International Conference on Intelligent Robots and Systems (1994)Google Scholar
  15. 15.
    Werger, B., Mataric, M.: Broadcast of Local Eligibility for Multi-target Observation, pp. 347–356. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hamido Hourani
    • 1
  • Philipp Wolters
    • 1
  • Eckart Hauck
    • 1
  • Annika Raatz
    • 2
  • Sabina Jeschke
    • 3
  1. 1.Institute for Management Cybernetics (IfU)RWTH Aachen UniversityAachenGermany
  2. 2.Institute of Machine Tools and Production TechnologyTU Braunschweig UniversityBraunschweigGermany
  3. 3.Institute of Information Management in Mechanical Engineering (IMA) and, Center for Learning and Knowledge Management (ZLW)RWTH Aachen UniversityAachenGermany

Personalised recommendations