Experimental Methods for Estimating the Fluxes of Energy and Matter

Chapter

Abstract

In meteorology and climatology, typically only specific atmospheric variables are measured in operational networks and energy and matter fluxes cannot easily be determined.In the last 20 years, the growing interest and research on climate change has increased the demand for reliable measurements of evaporation, carbon dioxide uptake by forests, and fluxes of other greenhouse gases. So far, these measurements were primarily for research purposes but their integration into operational networks is increasing. The measurements are very complex and need comprehensive micrometeorological knowledge. Most of the measurement methods are based on simplifications and special conditions, and therefore their implementation is not trivial. In the following chapter, overview tables provide guidance to the reader about areas of applications and related costs of the various methods.

Keywords

Latent Heat Flux Deposition Velocity Turbulent Flux Sonic Anemometer Bowen Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assc Comp Mach. 17:589–602.Google Scholar
  2. Ammann C, Brunner A, Spirig C and Neftel A (2006) Technical note: Water vapour concentration and flux measurements with PTR-MS. Atmos Chem Phys. 6:4643–4651.Google Scholar
  3. Arya SP (1999) Air Pollution Meteorology and Dispersion. Oxford University Press, New York, Oxford, 310 pp.Google Scholar
  4. Arya SP (2001) Introduction to Micrometeorology. Academic Press, San Diego, 415 pp.Google Scholar
  5. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ and Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys. 4:1461–1738.Google Scholar
  6. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R and Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv Ecol Res. 30:113–175.Google Scholar
  7. Aubinet M, Heinesch B and Yernaux M (2003a) Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorol. 108:397–417.Google Scholar
  8. Aubinet M, Clement R, Elbers J, Foken T, Grelle A, Ibrom A, Moncrieff H, Pilegaard K, Rannik U and Rebmann C (2003b) Methodology for data acquisition, storage and treatment. In: Valentini R (ed.), Fluxes of Carbon, Water and Energy of European Forests. Ecological Studies, Vol. 163. Springer, Berlin, Heidelberg, 9–35.Google Scholar
  9. Aubinet M, Berbigier P, Bernhofer C, Cescatti A, Feigenwinter C, Granier A, Grünwald T, Havrankova K, Heinesch B, Longdoz B, Marcolla B, Montagnani L and Sedlak P (2005) Comparing CO2 storage and advection conditions at night at different CarboEuroflux sites. Boundary-Layer Meteorol. 116:63–94.Google Scholar
  10. Aubinet M, Feigenwinter C, Heinesch B, Bernhofer C, Canepa E, Lindroth A, Montagnani L, Rebmann C, Sedlak P and van Gorsel E (2010) Direct advection measurements do not help to solve the night-time CO2 closure problem: Evidence from three different forests. Agrical Forest Meteorol. 150:655–664.Google Scholar
  11. Aubinet M, Vesala T and Papale D (eds) (2012a) Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer, Dordrecht, Heidelberg, London, New York, 438 pp.Google Scholar
  12. Aubinet M, Feigenwinter C, Heinesch B, Laffineur Q, Papale D, Reichstein M, Rinne J and Van Gorsel E (2012b) Nighttime flux correction. In: Aubinet Met al (eds.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer, Berlin, Heidelberg, 133–157.Google Scholar
  13. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, PawU KT, Pilegaard K, Schmid HP, Valentini R, Verma S and Vesala T (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Amer Meteorol Soc. 82:2415–2434.Google Scholar
  14. Barr AG, King KM, Gillespie TJ, Hartog GD and Neumann HH (1994) A comparison of Bowen ratio and eddy correlation sensible and latent heat flux measurements above deciduous forest. Boundary-Layer Meteorol. 71:21–41.Google Scholar
  15. Bartels J (1935) Zur Morphologie geophysikalischer Zeitfunktionen. Sitzungsberichte Preuß Akad Wiss. 30:504–522.Google Scholar
  16. Barthlott C and Fiedler F (2003) Turbulence structure in the wake region of a meteorological tower. Boundary-Layer Meteorol. 108:175–190.Google Scholar
  17. Bernhardt K and Piazena H (1988) Zum Einfluß turbulenzbedingter Dichteschwankungen auf die Bestimmung turbulenter Austauschströme in der Bodenschicht. Z Meteorol. 38:234–245.Google Scholar
  18. Bernhofer C (1992) Estimating forest evapotranspiration at a non-ideal site. Agrical Forest Meteorol. 60:17–32.Google Scholar
  19. Bilger RW (1980) Turbulent flows with nonpremixed reactants. In: Libby PA and Willimas FA (eds.), Turbulent Reacting Flows. Springer, Berlin, Heidelberg, 65–113.Google Scholar
  20. Bowling DR, Delany AC, Turnispseed AA, Baldocchi DD and Monson RK (1999) Modification of the relaxed eddy accumulation technique to maximize measured scalar mixing ratio differences in updrafts and downdrafts. J Geophys Res. 104:9121–9133.Google Scholar
  21. Bowling DR, Pataki DE and Ehleringer JR (2003) Critical evaluation of micrometeorological methods for measuring ecosystem-atmosphere isotopic exchange of CO2. Agrical Forest Meteorol. 116:159–179.Google Scholar
  22. Brocks K and Krügermeyer L (1970) Die hydrodynamische Rauhigkeit der Meeresoberfläche. Ber Inst Radiometeorol Marit Meteorol. 14:55 pp.Google Scholar
  23. Brook RR (1978) The influence of water vapor fluctuations on turbulent fluxes. Boundary-Layer Meteorol. 15:481–487.Google Scholar
  24. Burba G, McDermitt DK, Grelle A, Anderson DJ and Xu L (2008) Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biology. 14:1854–1876.Google Scholar
  25. Businger JA (1986) Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J Appl Meteorol. 25:1100–1124.Google Scholar
  26. Businger JA and Oncley SP (1990) Flux measurement with conditional sampling. J Atm Oceanic Techn. 7:349–352.Google Scholar
  27. Castellví F and Snyder RL (2010) A comparison between latent heat fluxes over grass using a weighing lysimeter and surface renewal analysis. J Hydrol. 381:213–220.Google Scholar
  28. Castellví F, Consoli S and Papa R (2012) Sensible heat flux estimates using two different methods based on surface renewal analysis. A study case over an orange orchard in Sicily. Agrical Forest Meteorol. 152:58–64.Google Scholar
  29. Chamberlain AC (1961) Aspects of travel and deposition of aerosol and vapour clouds. A.E.R.E., Harwell, Berkshire, 38 pp.Google Scholar
  30. Charuchittipan D, Babel W, Mauder M, Leps J-P and Foken T (2014) Extension of the averaging time of the eddy-covariance measurement and its effect on the energy balance closure Boundary-Layer Meteorol. 152:303–327.Google Scholar
  31. Desjardins RL (1977) Description and evaluation of a sensible heat flux detector. Boundary-Layer Meteorol. 11:147–154.Google Scholar
  32. Desjardins RL, MacPherson JI, Schuepp PH and Karanja F (1989) An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Boundary-Layer Meteorol. 47:55–69.Google Scholar
  33. Dlugi R (1993) Interaction of NOx and VOC’s within vegetation. In: Borrell PW (ed.), Proceedings EUROTRAC-Symposium 92. SPB Acad. Publ., The Hague, 682–688.Google Scholar
  34. Doran JC and Verholek MG (1978) A note on vertical extrapolation formulas for Weibull velocity distribution parameters. J Climate Appl Meteorol. 17:410–412.Google Scholar
  35. Dugas WA, Fritschen LJ, Gay LW, Held AA, Matthias AD, Reicosky DC, Steduto P and Steiner JL (1991) Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat. Agrical Forest Meteorol. 56:12–20.Google Scholar
  36. Dyer AJ (1974) A review of flux-profile-relationships. Boundary-Layer Meteorol. 7:363–372.Google Scholar
  37. Dyer AJ (1981) Flow distortion by supporting structures. Boundary-Layer Meteorol. 20:363–372.Google Scholar
  38. Eugster W and Senn W (1995) A cospectral correction for measurement of turbulent NO2 flux. Boundary-Layer Meteorol. 74:321–340.Google Scholar
  39. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff H, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K and Wofsy S (2001) Gap filling strategies for long term energy flux data sets. Agrical Forest Meteorol. 107:71–77.Google Scholar
  40. Finkelstein PL and Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res. D106:3503–3509.Google Scholar
  41. Finlayson-Pitts BJ and Pitts JN (2000) Chemistry of the Upper and Lower Atmosphere. Academic Press, San Diego, 963 pp.Google Scholar
  42. Finnigan J (1999) A comment on the paper by Lee (1998): “On micrometeorological observations of surface-air exchange over tall vegetation”. Agrical Forest Meteorol. 97:55–64.Google Scholar
  43. Finnigan JJ, Clement R, Malhi Y, Leuning R and Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques, Part I: Averaging and coordinate rotation. Boundary-Layer Meteorol. 107:1–48.Google Scholar
  44. Foken T (1990) Turbulenter Energieaustausch zwischen Atmosphäre und Unterlage - Methoden, meßtechnische Realisierung sowie ihre Grenzen und Anwendungsmöglichkeiten. Ber Dt Wetterdienstes. 180:287 pp.Google Scholar
  45. Foken T (1998) Genauigkeit meteorologischer Messungen zur Bestimmung des Energie- und Stoffaustausches über hohen Pflanzenbeständen. Ann Meteorol. 37:513–514.Google Scholar
  46. Foken T and Skeib G (1980) Genauigkeit und Auswertung von Profilmessungen zur Energieaustauschbestimmung. Z Meteorol. 30:346–360.Google Scholar
  47. Foken T and Oncley SP (1995) Results of the workshop ‘Instrumental and methodical problems of land surface flux measurements’. Bull Amer Meteorol Soc. 76:1191–1193.Google Scholar
  48. Foken T and Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agrical Forest Meteorol. 78:83–105.Google Scholar
  49. Foken T, Dlugi R and Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface. Meteorol Z. 4:91–118.Google Scholar
  50. Foken T, Richter SH and Müller H (1997a) Zur Genauigkeit der Bowen-Ratio-Methode. Wetter und Leben. 49:57–77.Google Scholar
  51. Foken T, Jegede OO, Weisensee U, Richter SH, Handorf D, Görsdorf U, Vogel G, Schubert U, Kirzel H-J and Thiermann V (1997b) Results of the LINEX-96/2 Experiment. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse. 48:75 pp.Google Scholar
  52. Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD and Munger JW (2004) Post-field data quality control. In: Lee X et al (eds.), Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Kluwer, Dordrecht, 181–208.Google Scholar
  53. Foken T, Wimmer F, Mauder M, Thomas C and Liebethal C (2006) Some aspects of the energy balance closure problem. Atmos Chem Phys. 6:4395–4402.Google Scholar
  54. Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V and Zhu Z (2012a) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site—results of the EGER experiment. Atmos Chem Phys. 12:1923–1950.Google Scholar
  55. Foken T, Aubinet M and Leuning R (2012b) The eddy-covarianced method. In: Aubinet M et al (eds.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer, Dordrecht, Heidelberg, London, New York, 1–19.Google Scholar
  56. Foken T, Leuning R, Oncley SP, Mauder M and Aubinet M (2012c) Corrections and data quality In: Aubinet M et al (eds.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer, Dordrecht, Heidelberg, London, New York, 85–131.Google Scholar
  57. Frank JM, Massman WJ and Ewers BE (2013) Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers. Agrical Forest Meteorol. 171–172:72–81.Google Scholar
  58. Fratini G and Mauder M (2014) Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3. Atmos Meas Techn. 7:2273–2281.Google Scholar
  59. Fuchs M and Tanner CB (1970) Error analysis of Bowen ratios measured by differential psychrometry. Agric Meteorol. 7:329–334.Google Scholar
  60. Fuehrer PL and Friehe CA (2002) Flux correction revised. Boundary-Layer Meteorol. 102:415–457.Google Scholar
  61. Garratt JR (1992) The Atmospheric Boundary Layer. Cambridge University Press, Cambridge, 316 pp.Google Scholar
  62. Geernaert GL (ed) (1999) Air-Sea Exchange: Physics, Chemistry and Dynamics. Kluwer Acad. Publ., Dordrecht, 578 pp.Google Scholar
  63. Goulden ML, Munger JW, Fan F-M, Daube BC and Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: method and critical evaluation of accuracy. Global Change Biol. 2:159–168.Google Scholar
  64. Grelle A and Burba G (2007) Fine-wire thermometer to correct CO2 fluxes by open-path analyzers for artificial density fluctuations. Agrical Forest Meteorol. 147:48–57.Google Scholar
  65. Gu L, Falge EM, Boden T, Baldocchi DD, Black T, Saleska SR, Sumi T, Verma SB, Vesala T, Wofsy SC and Xu L (2005) Objective threshold determination for nighttime eddy flux filtering. Agrical Forest Meteorol. 128:179–197.Google Scholar
  66. Guderian R (ed) (2000) Handbuch der Umweltveränderungen und Ökotoxikologie, Atmosphäre. Springer, Berlin, Heidelberg, 424, 516 pp.Google Scholar
  67. Gurjanov AE, Zubkovskij SL and Fedorov MM (1984) Mnogokanalnaja avtomatizirovannaja sistema obrabotki signalov na baze EVM (Automatic multi-channel system for signal analysis with electronic data processing). Geod Geophys Veröff, R II. 26:17–20.Google Scholar
  68. Haugen DA (ed) (1973) Workshop on Micrometeorology. Am. Meteorol. Soc., Boston, 392 pp.Google Scholar
  69. Helbig A, Baumüller J and Kerschgens MJ (eds) (1999) Stadtklima und Luftreinhaltung. Springer, Berlin, Heidelberg, 467 pp.Google Scholar
  70. Held A, Niessner R, Bosveld F, Wrzesinsky T and Klemm O (2007) Evaluation and application of an electrical low pressure impactor in disjunct eddy covariance aerosol flux measurements. Aerosol Science and Technology. 41:510–519.Google Scholar
  71. Hesselberg T (1926) Die Gesetze der ausgeglichenen atmosphärischen Bewegungen. Beitr Phys Atm. 12:141–160.Google Scholar
  72. Hicks BB and Matt DR (1988) Combining biology, chemistry and meteorology in modelling and measuring dry deposition. J Atm Chem. 6:117–131.Google Scholar
  73. Hicks BB, Baldocchi DD, Meyers TP, Hosker jr. RP and Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air and Soil Pollution. 36:311–330.Google Scholar
  74. Hoaglin DC, Mosteller F and Tukey JW (2000) Understanding robust and exploratory data analysis. John Wiley & Sons, New York, 447 pp.Google Scholar
  75. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary-Layer Meteorol. 42:55–78.Google Scholar
  76. Högström U and Smedman A (2004) Accuracy of sonic anemometers: Laminar wind-tunnel calibrations compared to atmospheric in situ calibrations against a reference instrument. Boundary-Layer Meteorol. 111:33–54.Google Scholar
  77. Højstrup J (1993) A statistical data screening procedure. Meas Sci Techn. 4:153–157.Google Scholar
  78. Hollinger DY and Richardson AD (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Phys. 25:873–885.Google Scholar
  79. Horst TW (1997) A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorol. 82:219–233.Google Scholar
  80. Horst TW, Semmer SR and Maclean G (2015) Correction of a non-orthogonal, three-component sonic aanemometer for flow Distortion by transducer shadowing. Boundary-Layer Meteorol. 155:371–395.Google Scholar
  81. Hsu SA, Meindl EA and Gilhousen DB (1994) Determination of power-law wind-profile exponent under near- neutral stability conditions at sea. J Appl Meteorol. 33:757–765.Google Scholar
  82. Huang CH (1979) A theory of dispersion in turbulent shear flow. Atmos Environm. 13:453–463.Google Scholar
  83. Huges IG and Hase TPA (2010) Measurements and their Uncertainties. Oxford University Press, Oxford, 136 pp.Google Scholar
  84. Hui DF, Wan SQ, Su B, Katul G, Monson R and Luo YQ (2004) Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agrical Forest Meteorol. 121:93–111.Google Scholar
  85. Hyson P, Garratt JR and Francey RJ (1977) Algebraic und elektronic corrections of measured uw covariance in the lower atmosphere. Boundary-Layer Meteorol. 16:43–47.Google Scholar
  86. Ibrom A, Dellwik E, Larsen SE and Pilegaard K (2007a) On the use of the Webb–Pearman–Leuning theory for closed-path eddy correlation measurements. Tellus. B 59:937–946.Google Scholar
  87. Ibrom A, Dellwik E, Flyvbjerg H, Jensen NO and Pilegaard K (2007b) Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agrical Forest Meteorol. 147:140–156.Google Scholar
  88. Irvin JS (1978) A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability. Atmos Environm. 13:191–194.Google Scholar
  89. Itier B (1980) Une méthode simplifièe pour la mesure du flux de chaleur sensible. J Rech Atm. 14:17–34.Google Scholar
  90. Järvi L, Mammarella I, Eugster W, Ibrom A, Siivola E, Dellwik E, Keronen P, Burba G and Vesala T (2009) Comparison of net CO2 fluxes measured with open- and closed-path infrared gas analyzers in urban complex environment. Boreal Environm Res. 14:499–514.Google Scholar
  91. Joffre SM (1984) Power laws and the empirical representation of velocity and directional sheer. J Climate Appl Meteorol. 23:1196–1203.Google Scholar
  92. Kader BA and Perepelkin VG (1984) Profil skorosti vetra i temperatury v prizemnom sloje atmosfery v uslovijach nejtralnoj i neustojtschivoj stratifikacii (The wind and temperature profile in the near surface layer for neutral and unstable stratification). Izv AN SSSR, Fiz Atm Okeana. 20:151–161.Google Scholar
  93. Kaimal JC (1978) Sonic Anemometer Measurement of Atmospheric Turbulence. In: Hansen B (ed.), Proceedings of the Dynamic Flow Conference 1978 on Dynamic Measurements in Unsteady Flows. Springer Netherlands, 551–565.Google Scholar
  94. Kaimal JC and Gaynor JE (1991) Another look to sonic thermometry. Boundary-Layer Meteorol. 56:401–410.Google Scholar
  95. Kaimal JC and Finnigan JJ (1994) Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, New York, NY, 289 pp.Google Scholar
  96. Kaimal JC, Wyngaard JC, Izumi Y and Coté OR (1972) Spectral characteristics of surface layer turbulence. Quart J Roy Meteorol Soc. 98:563–589.Google Scholar
  97. Kaimal JC, Gaynor JE, Zimmerman HA and Zimmerman GA (1990) Minimizing flow distortion errrors in a sonic anemometer. Boundary-Layer Meteorol. 53:103–115.Google Scholar
  98. Katul G, Hsieh C-I, Oren R, Ellsworth D and Phillips N (1996) Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods. Boundary-Layer Meteorol. 80:249–282.Google Scholar
  99. Kormann R and Meixner FX (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol. 99:207–224.Google Scholar
  100. Kowalski A (2006) Comment on “An Alternative Approach for CO2 Flux Correction Caused by Heat and Water Vapour Transfer” by Liu. Boundary-Layer Meteorol. 120:353–355.Google Scholar
  101. Kramm G and Meixner FX (2000) On the dispersion of trace species in the atmospheric boundary layer: a re-formulation of the governing equations for the turbulent flow of the compressible atmosphere. Tellus. 51A:500–522.Google Scholar
  102. Kramm G, Dlugi R and Lenschow DH (1995) A re-evaluation of the Webb correction using density weighted averages. J Hydrol. 166:293–311.Google Scholar
  103. Kramm G, Beier M, Foken T, Müller H, Schröder P and Seiler W (1996) A SVAT-skime for NO, NO2, and O3—Model description and test results. Meteorol Atmos Phys. 61:89–106.Google Scholar
  104. Kristensen L, Mann J, Oncley SP and Wyngaard JC (1997) How close is close enough when measuring scalar fluxes with displaced sensors. J Atm Oceanic Techn. 14:814–821.Google Scholar
  105. Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P and Wohlfahrt G (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology. 16:187–208.Google Scholar
  106. Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agrical Forest Meteorol. 91:39–49.Google Scholar
  107. Lee X, Massman WJ and Law B (eds) (2004) Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Kluwer, Dordrecht, 250 pp.Google Scholar
  108. Lege D (1981) Eine Betrachtung zur Bestimmung des Stroms fühlbarer Wärme und der Schubspannungsgeschwindigkeit aus Temperatur- und Windgeschwindigkeitsdifferenzen. Meteorol Rundschau. 34:1–4.Google Scholar
  109. Lenschow DH (1982) Reactive trace species in the boundary layer from a micrometeorological perspective. J Meteor Soc Japan. 60:472–480.Google Scholar
  110. Lenschow DH, Mann J and Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics? J Atm Oceanic Techn. 11:661–673.Google Scholar
  111. Leuning R (2007) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows Boundary-Layer Meteorol. 123:263–267.Google Scholar
  112. Leuning R and Legg BJ (1982) Comments on ‘The influence of water vapor fluctuations on turbulent fluxes’ by Brook. Boundary-Layer Meteorol. 23:255–258.Google Scholar
  113. Leuning R and Judd MJ (1996) The relative merits of open- and closed path analysers for measurements of eddy fluxes. Global Change Biology. 2:241–254.Google Scholar
  114. Liebethal C and Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol. 109:99–106.Google Scholar
  115. Liebethal C and Foken T (2004) On the significance of the Webb correction to fluxes, Corrigendum. Boundary-Layer Meteorol. 113:301.Google Scholar
  116. Lindauer M, Schmid HP, Grote R, Mauder M, Steinbrecher R and Wolpert B (2014) Net ecosystem exchange over a non-cleared wind-throw-disturbed upland spruce forest—Measurements and simulations. Agrical Forest Meteorol. 197:219–234.Google Scholar
  117. Liu H (2005) An alternative approach for CO2 flux correction caused by heat and water vapour transfer. Boundary-Layer Meteorol. 115:151–168.Google Scholar
  118. Liu H and Foken T (2001) A modified Bowen ratio method to determine sensible and latent heat fluxes. Meteorol Z. 10:71–80.Google Scholar
  119. Liu H, Peters G and Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol. 100:459–468.Google Scholar
  120. Liu H, Randerson JT, Lindfors J, Massman WJ and Foken T (2006) Consequences of incomplete surface energy balance closure for CO2 fluxes from open-path CO2/H2O infrared gas analyzers. Boundary-Layer Meteorol. 120:65–85.Google Scholar
  121. Lloyd J and Taylor JA (1994) On the temperature dependence of soil respiration. Functional Ecol. 8:315–323.Google Scholar
  122. Mahrt L (1991) Eddy asymmetry in the sheared heated boundary layer. J Atmos Sci. 48:472–492.Google Scholar
  123. Mahrt L (1996) The bulk aerodynamic formulation over heterogeneous surfaces. Boundary-Layer Meteorol. 78:87–119.Google Scholar
  124. Marquardt D (1983) An algorithm for least-sqares estimation of nonlinear parameters. J Soc Indust Appl Math. 11:431–441.Google Scholar
  125. Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agrical Forest Meteorol. 104:185–198.Google Scholar
  126. Massman WJ and Tuovinen J-P (2006) An analysis and implications of alternative methods of deriving the density (WPL) terms for eddy covariance flux measurements. Boundary-Layer Meteorol. 121:221–227.Google Scholar
  127. Mauder M, Liebethal C, Göckede M, Leps J-P, Beyrich F and Foken T (2006) Processing and quality control of flux data during LITFASS-2003. Boundary-Layer Meteorol. 121:67–88.Google Scholar
  128. Mauder M, Foken T, Clement R, Elbers J, Eugster W, Grünwald T, Heusinkveld B and Kolle O (2008) Quality control of CarboEurope flux data - Part 2: Inter-comparison of eddy-covariance software. Biogeoscience. 5:451–462.Google Scholar
  129. Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M and Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agrical Forest Meteorol. 169:122–135.Google Scholar
  130. Mayer JC, Bargsten A, Rummel U, Meixner FX and Foken T (2011) Distributed Modified Bowen Ratio method for surface layer fluxes of reactive and non-reactive trace gases. Agrical Forest Meteorol. 151:655–668.Google Scholar
  131. McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol. 43:231–245.Google Scholar
  132. Michaelis L and Menton ML (1913) Die Kinetik der Invertinwirkung. Biochem Z. 49:333.Google Scholar
  133. Moffat AM, Papale D, Reichstein M, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai A, Falge E, Gove JH, Heimann M, Hollinger DY, Hui D, Jarvis AJ, Kattge J, Noormets A, Richardson AD and Stauch VJ (2007) Comprehensive comparison of gap filling techniques for eddy covariance net carbon fluxes. Agrical Forest Meteorol. 47:209–232.Google Scholar
  134. Molemaker MJ and Vilà-Guerau de Arellano J (1998) Control of chemical reactions by convective turbulence in the boundary layer. J Atmos Sci. 55:568–579.Google Scholar
  135. Moncrieff JB, Massheder JM, DeBruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Søgaard H and Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. J Hydrol. 188–189:589–611.Google Scholar
  136. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol. 37:17–35.Google Scholar
  137. Moravek A, Trebs I and Foken T (2013) Effect of imprecise lag time and high-frequency attenuation on surface-atmosphere exchange fluxes determined with the relaxed eddy accumulation method. J Geophys Res: Atmosph. 118:10, 210–210, 224.Google Scholar
  138. Moravek A, Foken T and Trebs I (2014) Application of a GC-ECD for measurements of biosphere–atmosphere exchange fluxes of peroxyacetyl nitrate using the relaxed eddy accumulation and gradient method. Athmospheric Measurement Techniques. 7:2097–2119.Google Scholar
  139. Müller H, Kramm G, Meixner FX, Fowler D, Dollard GJ and Possanzini M (1993) Determination of HNO3 dry deposition by modified Bowen ratio and aerodynamic profile techniques. Tellus. 45B:346–367.Google Scholar
  140. Nakai T and Shimoyama K (2012) Ultrasonic anemometer angle of attack errors under turbulent conditions. Agrical Forest Meteorol. 162–163:14–26.Google Scholar
  141. Nakai T, van der Molen MK, Gash JHC and Kodama Y (2006) Correction of sonic anemometer angle of attack errors. Agrical Forest Meteorol. 136:19–30.Google Scholar
  142. Nicholls S and Smith FB (1982) On the definition of the flux of sensible heat. Boundary-Layer Meteorol. 24:121–127.Google Scholar
  143. Nieuwstadt FTM (1978) The computation of the friction velocity u* and the temperature scale T* from temperature and wind velocity profiles by least-square method. Boundary-Layer Meteorol. 14:235–246.Google Scholar
  144. Oechel WC, Laskowski CA, Burba G, Gioli B and Kalhori AAM (2014) Annual patterns and budget of CO2 flux in an Arctic tussock tundra ecosystem. Journal of Geophysical Research: Biogeosciences. 119:2013JG002431.Google Scholar
  145. Ohmura A (1982) Objective criteria for rejecting data for Bowen ratio flux calculations. J Climate Appl Meteorol. 21:595–598.Google Scholar
  146. Oncley SP, Businger JA, Itsweire EC, Friehe CA, LaRue JC and Chang SS (1990) Surface layer profiles and turbulence measurements over uniform land under near-neutral conditions. 9th Symposium on Boundary Layer and Turbulence, Roskilde, Denmark, April 30 - May 3, 1990. Am. Meteorol. Soc., pp. 237–240.Google Scholar
  147. Oncley SP, Delany AC, Horst TW and Tans PP (1993) Verification of flux measurement using relaxed eddy accumulation. Atmos Environm. 27A:2417–2426.Google Scholar
  148. Panin GN (1983) Metodika rastscheta lokalnogo teplo- i vlagoobmena v sisteme vodoem - atmosfera (Method for calculation of local heat and humidity exchange of the system water - atmosphere). Vodnye resursy. 4:3–12.Google Scholar
  149. Papale D and Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology. 9:525–535.Google Scholar
  150. Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T and Yakir D (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeoscience. 3:571–583.Google Scholar
  151. Pattey E, Desjardins RL and Rochette P (1993) Accuracy of the relaxed eddy accumulation technique. Boundary-Layer Meteorol. 66:341–355.Google Scholar
  152. Pattey E, Strachan IB, Desjardins RL, Edwards GC, Dow D and MacPherson IJ (2006) Application of a tunable diode laser to the measurement of CH4 and N2O fluxes from field to landscape scale using several micrometeorological techniques. Agrical Forest Meteorol. 136:222–236.Google Scholar
  153. Paw U KT, Qiu J, Su H-B, Watanabe T and Brunet Y (1995) Surface renewal analysis: a new method to obtain scalar fluxes. Agrical Forest Meteorol. 74:119–137.Google Scholar
  154. Paw U KT, Baldocchi D, Meyers TP and Wilson KB (2000) Correction of eddy covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorol. 97:487–511.Google Scholar
  155. Pearson jr. RJ, Oncley SP and Delany AC (1998) A scalar similarity study based on surface layer ozone measurements over cotton during the California Ozone Deposition Experiment. J Geophys Res. 103 (D15):18919–18926.Google Scholar
  156. Peterson EW and Hennessey jr. JP (1978) On the use of power laws for estimates of wind power potential. J Climate Appl Meteorol. 17:390–394.Google Scholar
  157. Rannik U and Vesala T (1999) Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Boundary-Layer Meteorol. 91:259–280.Google Scholar
  158. Rebmann C, Göckede M, Foken T, Aubinet M, Aurela M, Berbigier P, Bernhofer C, Buchmann N, Carrara A, Cescatti A, Ceulemans R, Clement R, Elbers J, Granier A, Grünwald T, Guyon D, Havránková K, Heinesch B, Knohl A, Laurila T, Longdoz B, Marcolla B, Markkanen T, Miglietta F, Moncrieff H, Montagnani L, Moors E, Nardino M, Ourcvial J-M, Rambal S, Rannik U, Rotenberg E, Sedlak P, Unterhuber G, Vesala T and Yakir D (2005) Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor Appl Climat. 80:121–141.Google Scholar
  159. Rebmann C, Kolle O, Heinesch B, Queck R, Ibrom A and Aubinet M (2012) Data acquisition and flux calculations. In: Aubinet Met al (eds.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer, Dordrecht, Heidelberg, London, New York, 59–83.Google Scholar
  160. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D and Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology. 11:1424–1439.Google Scholar
  161. Ren X, Sanders JE, Rajendran A, Weber RJ, Goldstein AH, Pusede SE, Browne EC, Min KE and Cohen RC (2011) A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid. Atmos. Meas. Tech. 4:2093–2103.Google Scholar
  162. Richardson AD, Hollinger DY, Burba GG, Davis KJ, Flanagan LB, Katul GG, Munger JW, Ricciuto DM, Stoy PC, Suyker AE, Verma SB and Wofsy SC (2006) A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agrical Forest Meteorol. 136:1–18.Google Scholar
  163. Richter SH and Skeib G (1984) Anwendung eines Verfahrens zur Parametrisierung des turbulenten Energieaustausches in der atmosphärischen Bodenschicht. Geod Geophys Veröff, R II. 26:80–85.Google Scholar
  164. Richter SH and Skeib G (1991) Ein Verfahren zur Parametrisierung von Austauschprozessen in der bodennahen Luftschicht. Abh Meteorol Dienstes DDR. 146:15–22.Google Scholar
  165. Riederer M, Hübner J, Ruppert J, Brand WA and Foken T (2014) Prerequisites for application of hyperbolic relaxed eddy accumulation on managed grasslands and alternative net ecosystem exchange flux partitioning. Atmos Meas Techn. 7:4237–4250.Google Scholar
  166. Rinne HJI, Delany AC, Greenberg JP and Guenther AB (2000) A true eddy accumulation system for trace gase fluxes using disjunct eddy sampling method. J Geophys Res. 105(D20):24791–24798.Google Scholar
  167. Rinne J and Ammann C (2012) Disjunct eddy covariance method. In: Aubinet Met al (eds.), Eddy Covariance: A Practical Guide to Measurement and Data. Springer, Dordrecht, Heidelberg, London, New York, 291–307.Google Scholar
  168. Roth R (1975) Der vertikale Transport von Luftbeimengungen in der Prandtl-Schicht und die Depositionsgeschwindigkeit. Meteorol Rundschau. 28:65–71.Google Scholar
  169. Ruppert J, Wichura B, Delany AC and Foken T (2002) Eddy sampling methods, A comparison using simulation results. 15th Symposium on Boundary Layer and Turbulence, Wageningen, 15–19 July 2002. Am. Meteorol. Soc., pp. 27–30.Google Scholar
  170. Ruppert J, Thomas C and Foken T (2006a) Scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol. 120:39–63.Google Scholar
  171. Ruppert J, Mauder M, Thomas C and Lüers J (2006b) Innovative gap-filling strategy for annual sums of CO2 net ecosystem exchange. Agrical Forest Meteorol. 138:5–18.Google Scholar
  172. SanClements M, Metzger S, Luo H, Pingintha-Durden N, Zulueta RC and Loescher HW (2014) The National Ecological Observatory Network (NEON): Providing free long-term ecological data on a continental scale. iLEAPS newsletter, Special issue on Environmental Research Infrastructures:23–26.Google Scholar
  173. Santoso E and Stull RB (1998) Wind and temperature profiles in the Radix layer: The botton fifth of the convective boundary layer. J Appl Meteorol. 37:545–558.Google Scholar
  174. Schmidt A and Klemm O (2008) Direct determination of highly size-resolved turbulent particle fluxes with the disjunct eddy covariance method and a 12 – stage electrical low pressure impactor. Atmos Chem Phys. 8:7405–7417.Google Scholar
  175. Schotanus P, Nieuwstadt FTM and DeBruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary-Layer Meteorol. 26:81–93.Google Scholar
  176. Schumann U (1989) Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos Environm. 23:1713–1727.Google Scholar
  177. Sedefian L (1980) On the vertical extrapolation of mean wind power density. J Climate Appl Meteorol. 19:488–493.Google Scholar
  178. Seinfeld JH and Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New York, 1326 pp.Google Scholar
  179. Shaw RH (1985) On diffusive and dispersive fluxes in forest canopies. In: Hutchinson BA and Hicks BB (eds.), The Forest-Atmosphere interaction. Reidel Publishing Company, 407–419.Google Scholar
  180. Siebicke L, Hunner M and Foken T (2012) Aspects of CO2-advection measurements. Theor Appl Climat. 109:109–131.Google Scholar
  181. Sinclair TR, Allen jr. LH and Lemon ER (1975) An analysis of errors in the calculation of energy flux densities above vegetation by Bowen-ratio profile method. Boundary-Layer Meteorol. 8:129–139.Google Scholar
  182. Skeib G (1980) Zur Definition universeller Funktionen für die Gradienten von Windgeschwindigkeit und Temperatur in der bodennahen Luftschicht. Z Meteorol. 30:23–32.Google Scholar
  183. Smith SD, Fairall CW, Geernaert GL and Hasse L (1996) Air-sea fluxes: 25 years of progress. Boundary-Layer Meteorol. 78:247–290.Google Scholar
  184. Snyder RL, Spano D and Paw U KT (1996) Surface renewal analysis for sensible and latent heat flux density. Boundary-Layer Meteorol. 77:249–266.Google Scholar
  185. Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Acad. Publ., Dordrecht, Boston, London, 666 pp.Google Scholar
  186. Su HB, Schmid HP, Grimmond CSB, Vogel CS and Curtis PS (2008) An assessment of observed vertical flux divergence in long-term eddy-covariance measurements over two Midwestern forest ecosystems. Agrical Forest Meteorol. 148:186–205.Google Scholar
  187. Tanner CB and Thurtell GW (1969) Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer. ECOM, United States Army Electronics Command, Research and Developement, ECOM-66-G22-F, Fort Huachuca, AZ, 82 pp.Google Scholar
  188. Tsvang LR, Zubkovskij SL, Kader BA, Kallistratova MA, Foken T, Gerstmann W, Przandka Z, Pretel J, Zelený J and Keder J (1985) International turbulence comparison experiment (ITCE-81). Boundary-Layer Meteorol. 31:325–348.Google Scholar
  189. Turnipseed AA, Pressley SN, Karl T, Lamb B, Nemitz E, Allwine E, Cooper WA, Shertz S and Guenther AB (2009) The use of disjunct eddy sampling methods for the determination of ecosystem level fluxes of trace gases. Athmospheric Chemistry and Physics. 9:981–994.Google Scholar
  190. Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ and Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agrical Forest Meteorol. 103:279–300.Google Scholar
  191. Vickers D and Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atm Oceanic Techn. 14:512–526.Google Scholar
  192. Vilà-Guerau de Arellano J (2003) Bridging the gap between atmospheric physics and chemistry in studies of small-scale turbulence. Bull Amer Meteorol Soc. 84:51–56.Google Scholar
  193. Vilà-Guerau de Arellano J and Duynkerke P (1992) Influence of chemistry on the flux-gradient relationships for the NO-O3-NO2 system. Boundary-Layer Meteorol. 61:375–387.Google Scholar
  194. Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Quart J Roy Meteorol Soc. 96:67–90.Google Scholar
  195. Webb EK (1982) On the correction of flux measurements for effects of heat and water vapour transfer. Boundary-Layer Meteorol. 23:251–254.Google Scholar
  196. Webb EK, Pearman GI and Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc. 106:85–100.Google Scholar
  197. Wichura B, Buchmann N and Foken T (2000) Fluxes of the stable carbon isotope 13C above a spruce forest measured by hyperbolic relaxed eddy accumulation method. 14th Symposium on Boundary Layer and Turbulence, Aspen, CO., 7–11 Aug. 2000. Am. Meteorol. Soc., Boston, pp. 559–562.Google Scholar
  198. Wieringa J (1980) A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding. Boundary-Layer Meteorol. 18:411–430.Google Scholar
  199. Wieringa J (1989) Shapes of annual frequency distribution of wind speed observed on high meteorological masts. Boundary-Layer Meteorol. 47:85–110.Google Scholar
  200. Wilczak JM, Oncley SP and Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol. 99:127–150.Google Scholar
  201. Wrzesinsky T and Klemm O (2000) Summertime fog chemistry at a mountainous site in Central Europe. Atmos Environm. 34:1487–1496.Google Scholar
  202. Wyngaard JC (1981) The effects of probe-indused flow distortion on atmospheric turbulence measurements. J Appl Meteorol. 20:784–794.Google Scholar
  203. Wyngaard JC (1982) Boundary-Layer Modelling. In: Nieuwstadt FTM and Van Dop H (eds.), Atmospheric Turbulence and Air Pollution Modelling. Reidel, Dordrecht, 69–106.Google Scholar
  204. Wyngaard JC and Moeng C-H (1992) Parameterizing turbulent diffusion through the joint probability density. Boundary-Layer Meteorol. 60:1–13.Google Scholar
  205. Wyngaard JC, Businger JA, Kaimal JC and Larsen SE (1982) Comments on ‘A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding’. Boundary-Layer Meteorol. 22:245–250.Google Scholar
  206. Zhang SF, Wyngaard JC, Businger JA and Oncley SP (1986) Response characteristics of the U.W. sonic anemometer. J Atm Oceanic Techn. 2:548–558.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  2. 2.BischbergGermany

Personalised recommendations