Exploring Mesoscale Contact Mechanics by Atomic Force Microscopy

  • Renato Buzio
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Mesoscale contact junctions, formed by mechanical interaction of elastic, viscoelastic, and elastoplastic solids, play a crucial role in a wide range of physical phenomena, going from rubber friction and adhesion to biological adhesion in filamentary attachment pads and cell adhesion and interaction with physical scaffolds. Moreover, they affect the response of several microelectromechanical systems and impact the performance of novel lithographies that manipulate objects, pattern surfaces, and transfer molecules with nanoscale accuracy. It is well known that the behavior of contact spots is highly complex since it depends on different factors, namely, contact geometry, bulk and surface (visco)elasticity, plasticity, physical and chemical adhesion. The introduction of novel experimental strategies, aimed to tightly correlate the junction response with their relevant interfacial properties, is certainly mandatory and highly promising. In this chapter, we present atomic force microscopy as an ideal tool for contact mechanics investigations on individual and multiple contact junctions. In particular, we focus on the fabrication of custom probes, with characteristic size from a few hundred nanometers to several microns, and on their use in nanoindentation studies. We also discuss paradigmatic experiments addressing the role of interfacial roughness, viscoelasticity, plasticity, and adhesion on the mechanical response of mesoscale contacts.

Keywords

Young Modulus Contact Stiffness Contact Spot Rough Substrate Surface Force Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F.P. Bowden, D. Tabor, Friction and Lubrication of Solids (Oxford University Press, Oxford, 1954)Google Scholar
  2. 2.
    B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, Heidelberg, New York, 2000)Google Scholar
  3. 3.
    B. Bhushan, in Handbook of Micro/Nanotribology, 2nd edn., ed. by B. Bhushan (CRC Press LLC, Boca Raton, 1999), p. 189Google Scholar
  4. 4.
    J. Swingler A. Lalechos, J. Phys. D: Appl. Phys. 42, 085304 (2009). doi:10.1088/0022–3727/42/8/085304Google Scholar
  5. 5.
    J. Swingler, J. Phys. D: Appl. Phys. 43, 145302 (2010)Google Scholar
  6. 6.
    J. Swingler, Wear 268, 1178 (2010)Google Scholar
  7. 7.
    C. Marie, D. Lasseux, ASME J, Fluids Eng. 129, 799 (2007)Google Scholar
  8. 8.
    B. Lorenz B.N.J. Persson, Europhys. Lett. 86, 44006 (2009)Google Scholar
  9. 9.
    F. Bottiglione, G. Carbone, L. Mangialardi, G. Mantriota, J. Appl. Phys. 106, 104902 (2009)Google Scholar
  10. 10.
    B.N.J. Persson, J. Phys.: Condens. Matter 22, 265004 (2010)Google Scholar
  11. 11.
    B. Lorenz B.N.J. Persson. Eur. Phys. J. E 32, 281 (2011)Google Scholar
  12. 12.
    M. Klüppel1 G. Heinrich, Rubber Chem. Technol. 73, 578 (2000)Google Scholar
  13. 13.
    B.N.J. Persson, U. Tartaglino, O. Albohr, E. Tosatti, Nat. Mater. 3, 882 (2004)Google Scholar
  14. 14.
    B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin, E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005)Google Scholar
  15. 15.
    B.N.J. Persson, U. Tartaglino, O. Albohr, E. Tosatti, Phys. Rev. B 71, 035428 (2005)Google Scholar
  16. 16.
    B.N.J. Persson, J. Phys.: Condens. Matter 23, 015003 (2011)Google Scholar
  17. 17.
    A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, S.Yu. Shapoval, Nat. Mater. 2, 461 (2003)Google Scholar
  18. 18.
    B.N.J. Persson, S. Gorb, J. Chem. Phys. 119, 11437 (2003)Google Scholar
  19. 19.
    R. Spolenak, S. Gorb E. Artz, Acta Biomater. 1, 5 (2005)Google Scholar
  20. 20.
    C. Majidi, R.E. Groff, Y. Maeno, B. Schubert, S. Baek, B. Bush, R. Maboudian, N. Gravish, M. Wilkinson, K. Autumn, R.S. Fearing, Phys. Rev. Lett. 97, 076103 (2006)Google Scholar
  21. 21.
    K. Autumn, MRS Bull. 32, 473 (2007)Google Scholar
  22. 22.
    A. del Campo, C. Greiner, E. Arzt, Langmuir 23, 10235 (2007)Google Scholar
  23. 23.
    H. Lee, B.P. Lee, P.B. Messersmith, Nature 448, 338 (2007)Google Scholar
  24. 24.
    S. Gorb, M. Varenberg, A. Peressadko J. Tuma, J. R. Soc. Interface 4, 271 (2007)Google Scholar
  25. 25.
    B. Bhushan, R.A. Sayer, Microsyst. Technol. 13, 71 (2007)Google Scholar
  26. 26.
    T. Kim, H.E. Jeong, K.Y. Suh, H.H. Lee, Adv. Mater. 21, 2276 (2009)Google Scholar
  27. 27.
    M.P. Murphy, S. Kim, M. Sitti, ACS Appl. Mater. Interface 1, 849 (2009)Google Scholar
  28. 28.
    G. Carbone, E. Pierro, S.N. Gorb, Soft Matter. 7, 5545 (2011)Google Scholar
  29. 29.
    M. Madou, J. Florkey, Chem. Rev. 100, 2679 (2000)Google Scholar
  30. 30.
    S.K. Sai, G.M. Whitesides, Electrophoresis 24, 3563 (2003)Google Scholar
  31. 31.
    H. Schift, A. Kristensen, in: Springer Handbook of Nanotechnology,  Chapter 9, ed. by B. Bhushan (Springer, Berlin, 2004)
  32. 32.
    B. Bhushan Z. Burton, Nanotechnology 17, 467 (2005)Google Scholar
  33. 33.
    D.R. Tokachichu, B. Bhushan, IEEE Trans. Nanotechnol. 5, 228 (2006)Google Scholar
  34. 34.
    W. Wang, S.A. Soper (eds.), Bio-MEMS: Technologies and Applications (CRC Press, Boca Raton, 2006)Google Scholar
  35. 35.
    S.P. Desai, B.M. Taff, J. Voldman, Langmuir 24, 575 (2008)Google Scholar
  36. 36.
    M.A. Meitel, Z.T. Zhu, V. Kumar, K.J. Lee, X. Feng, Y.Y. Huang, I. Adesida, R.G Nuzzo, J.A. Rogers, Nat. Mater. 5, 33 (2006)Google Scholar
  37. 37.
    X. Feng, M.A. Meitl, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Langmuir 23, 12555 (2007)Google Scholar
  38. 38.
    H.C. Ko, G. Shin, S. Wang, M.P. Stoykovich, J.W. Lee, D.H. Kim, J.S. Ha, Y. Huang, K.C. Hwang, J.A. Rogers, Small 5, 2703 (2009).Google Scholar
  39. 39.
    S.D. Wang, J.L. Xiao, J.Z. Song, H.C. Ko, K.C. Hwang, Y.G. Huang, J.A. Rogers, Soft Matter 6, 5757(2010)Google Scholar
  40. 40.
    S. Kim, J. Wu, A. Carlson, S.H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S.L. Elgan, W. Chen, P.M. Ferreira, M. Sitti, Y. Huang, J.A. Rogers, Proc. Natl. Acad. Sci. USA 107, 17095 (2010)Google Scholar
  41. 41.
    Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998)Google Scholar
  42. 42.
    X. Wang, C. Liu, Nano Lett. 5, 1867 (2005)Google Scholar
  43. 43.
    X. Wang, K.S. Ryu, D.A. Bullen, J. Zou, H. Zhang, C.A. Mirkin, C. Liu, Langmuir 19, 8951 (2003)Google Scholar
  44. 44.
    H. Zhang, R. Elghanian, N.A. Amro, S. Disawal, R. Eby, Nano Lett. 4, 1649 (2004)Google Scholar
  45. 45.
    S. Li, T.M. Dellinger, Q. Wang, S. Szegedi, C. Liu, Appl. Phys. Lett. 91, 023109 (2007)Google Scholar
  46. 46.
    K. Salaita, Y. Wang, C.A. Mirkin, Nat. Nanotechnol. 2, 145 (2007)Google Scholar
  47. 47.
    L. Nicu, T. Leïchlé, J. Appl. Phys. 104, 111101 (2008)Google Scholar
  48. 48.
    M.A. Kramer, H. Jaganathan, A. Ivanisevic, J. Am. Chem. Soc. 132, 4532 (2010)Google Scholar
  49. 49.
    A. Boisen, S. Dohn, S.S. Keller, S. Schmid, M. Tenje, Rep. Prog. Phys. 74, 036101 (2011)Google Scholar
  50. 50.
    Y. Hana, C. Liu, Sensors Actuators A 167, 433 (2011)Google Scholar
  51. 51.
    N.J. Sniadecki, R.A. Desai, S.A. Ruiz, C.S. Chen, Ann. Biomed. Eng. 34, 59 (2006)Google Scholar
  52. 52.
    K. Anselme, P. Davidson, A.M. Popa, M. Giazzon, M. Liley, L.M. Ploux, Acta Biomater. 6, 3824 (2010)Google Scholar
  53. 53.
    M. Braunovic, N.K. Myshkin, V.V. Konchits, Electrical Contacts: Fundamentals, Applications and Technology (CRC Press, Boca Raton, 2007)Google Scholar
  54. 54.
    B.N.J. Persson, Phys. Rev. Lett. 89, 245502 (2002)Google Scholar
  55. 55.
    B.N.J. Persson, Phys. Rev. Lett. 99, 125502 (2007)Google Scholar
  56. 56.
    G. Carbone, M. Scaraggi, U. Tartaglino, Eur. Phys. J. E 30, 65 (2009)Google Scholar
  57. 57.
    M. Paggi, M. Ciavarella, Wear 268, 1020 (2010)Google Scholar
  58. 58.
    B.N.J. Persson, B. Lorenz, A.I. Volokitin, Eur. Phys. J. E 31, 3 (2010)Google Scholar
  59. 59.
    C. Campana, B.N.J. Persson, M.H. Muser, J. Phys.: Conds. Matter 23, 085001 (2011)Google Scholar
  60. 60.
    S. Akarapu, T. Sharp, M.O. Robbins, Phys. Rev. Lett. 106, 204301 (2011)Google Scholar
  61. 61.
    A. Falsafi, P. Deprez, F.S. Bates, M. Tirrell, J. Rheol. 41, 1349 (1997)Google Scholar
  62. 62.
    M. Ruths, S. Granick, Langmuir 14, 1804 (1998)Google Scholar
  63. 63.
    M. Benz, K.J. Rosenberg, E.J. Kramer, J.N. Israelachvili, J. Phys. Chem. B 110, 11884 (2006)Google Scholar
  64. 64.
    X.D. Li, B. Bhushan, Mater. Characterization 48, 11 (2002)Google Scholar
  65. 65.
    W.C. Oliver, G.M. Pharr, J. Mat. Res. 7, 1564 (1992)Google Scholar
  66. 66.
    B. Cappella, G. Dietler, Surf. Sci. Rep. 34, 1 (1999)Google Scholar
  67. 67.
    S. Suresh, T.G. Nieh, B.W. Choi, Scr. Material. 41, 951 (1999)Google Scholar
  68. 68.
    R. Buzio, E. Gnecco, C. Boragno, U. Valbusa, Carbon 40, 883 (2002)Google Scholar
  69. 69.
    O. Rodriguez de la Fuente, J.A. Zimmerman, M.A. Gonzalez, J. de la Figuera, J.C. Hamilton, Woei Wu Pai, J.M. Rojo, Phys. Rev. Lett. 88, 36101 (2002)Google Scholar
  70. 70.
    G. Rubio-Bollinger, P. Joyez, N. Agrait, Phys. Rev. Lett. 93, 116803 (2004)Google Scholar
  71. 71.
    G. Bao, S. Suresh, Nat. Mater. 2, 715 (2003)Google Scholar
  72. 72.
    W.R. Bowen, R.W. Lovitt, C.J. Wright, Colloids Surf. A 173,205 (2000)Google Scholar
  73. 73.
    B. Luan, M.O. Robbins, Nature 435, 929 (2005)Google Scholar
  74. 74.
    A.L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)Google Scholar
  75. 75.
    A. Majumdar, B. Bhushan, ASME J. Tribol. 113, 1 (1991)Google Scholar
  76. 76.
    M.S. Bobji, S.K. Biswas, J.B. Pethica, Appl. Phys. Lett. 71, 1059 (1997)Google Scholar
  77. 77.
    C.A.J. Putman, M. Igarashi, R. Kaneko, Appl. Phys. Lett. 66, 3221 (1995)Google Scholar
  78. 78.
    W.A. Ducker, T.J. Senden, R.M. Pashley, Nature 353, 239 (1991)Google Scholar
  79. 79.
    G. Toikka, R.A. Hayes, J. Ralston, J. Coll. Interf. Sci. 180, 329 (1996)Google Scholar
  80. 80.
    R.F. Considine, R.A. Hayes, R.G. Horn, Langmuir 15, 1657 (1999)Google Scholar
  81. 81.
    M.M. Kohonen, M.E. Karaman, R.M. Pashley, Langmuir 16, 5749 (2000)Google Scholar
  82. 82.
    L. Heim, J. Blum, M. Preuss, H.J. Butt, Phys. Rev. Lett. 83, 3328 (1999)Google Scholar
  83. 83.
    U. Mohideen, R. Anushree, Phys. Rev. Lett. 81, 4549 (1998)Google Scholar
  84. 84.
    B. Bhushan, S. Sundararajan, Acta Mater. 46, 3793 (1998)Google Scholar
  85. 85.
    S. Biggs, R.G. Cain, R.R. Dagastine, N.W. Page, J. Adhes. Sci. Technol. 16, 869 (2002)Google Scholar
  86. 86.
    Y. Ando, J. Ino, Sensors Actuators A 57, 83 (1996)Google Scholar
  87. 87.
    H.J. Butt, Biophys. J. 60, 1438 (1991)Google Scholar
  88. 88.
    R. Buzio, F.B. de Mongeot, C. Boragno, U. Valbusa, Thin Solid Films 133, 111 (2003)Google Scholar
  89. 89.
    R. Buzio, C. Boragno, F. Biscarini, FB. de Mongeot, U. Valbusa, Nat. Mater. 2, 233 (2003)Google Scholar
  90. 90.
    R. Buzio, C. Boragno, U. Valbusa, Wear 254, 917 (2003)Google Scholar
  91. 91.
    R. Buzio, K. Malyska, Z. Rymuza, C. Boragno, F.B. de Mongeot, U. Valbusa, Proceedings of the 2003 STLE/ASME Joint International Tribology Conference, Ponte Vedra Beach, 2003.Google Scholar
  92. 92.
    D. Xu, K.M. Liechti, K. Ravi-Chandar, Rev. Sci. Instrum. 78, 073707 (2007)Google Scholar
  93. 93.
    D. Xu, K.M. Liechti, K. Ravi-Chandar, Langmuir 25, 12870 (2009)Google Scholar
  94. 94.
    K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. Lond. A 324, 301 (1971)Google Scholar
  95. 95.
    M. Reitsma, V. Craig, S. Biggs, Int. J. Adhes. Adhes. 20, 445 (2000)Google Scholar
  96. 96.
    G.W. Tormoen, J. Drelich, J. Adhes. Sci. Technol. 19, 181 (2005)Google Scholar
  97. 97.
    I.U. Vakarelski, A. Toritani, M. Nakayama, K. Higashitani, Langmuir 17, 4739 (2001)Google Scholar
  98. 98.
    J.H. Cho, D.H. Lee, H.S. Shin, S.K. Pattanayek, C.Y. Ryu, K. Cho, Langmuir 20, 11499 (2004)Google Scholar
  99. 99.
    R. Buzio, A. Bosca, S. Krol, D. Marchetto, S. Valeri, U. Valbusa, Langmuir 23, 9293 (2007)Google Scholar
  100. 100.
    D. Maugis, M.J. Barquins, J. Phys. D 11, 1989 (1978)Google Scholar
  101. 101.
    J.A. Greenwood, K.L. Johnson, J. Colloid Interface Sci. 296, 284 (2006)Google Scholar
  102. 102.
    K.L. Shull, Mater. Sci. Eng. R36, 1 (2002)Google Scholar
  103. 103.
    C.Y. Hui, J.M. Baney, E.J. Kramer, Langmuir 14, 6570 (1998)Google Scholar
  104. 104.
    E. Barthel, J. Colloid Interface Sci. 200, 7 (1998)Google Scholar
  105. 105.
    G. Carbone, B.N.J. Persson, Eur. Phys. J. E 17, 261 (2005)Google Scholar
  106. 106.
    M. Barquins, D. Maugis, J. Adhes. 13, 53 (1981)Google Scholar
  107. 107.
    R. Buzio, U.Valbusa, J. Phys.: Condens. Matter 20, 354014 (2008). doi:10.1088/0953–8984/20/35/354014Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Renato Buzio
    • 1
  1. 1.National Research Council CNR, CNR-SPIN Institute for Superconductivity, Innovative Materials and DevicesGenovaItaly

Personalised recommendations