Bridging Nano- and Microtribology in Mechanical and Biomolecular Layers

  • Agnieszka Tomala
  • Hakan Göçerler
  • Ille C. Gebeshuber
Part of the NanoScience and Technology book series (NANO)


The physical and chemical composition of surfaces determine various important properties of solids such as corrosion rates, adhesive properties, frictional properties, catalytic activity, wettability, contact potential and – finally and most importantly – failure mechanisms. Very thin, weak layers (of man-made and biological origin) on much harder substrates that reduce friction are the focus of the micro- and nanotribological investigations presented in this chapter.Biomolecular layers fulfil various functions in organs of the human body. Examples comprise the skin that provides a protective physical barrier between the body and the environment, preventing unwanted inward and outward passage of water and electrolytes, reducing penetration by destructive chemicals, arresting the penetration of microorganisms and external antigens and absorbing radiation from the sun, or the epithelium of the cornea that blocks the passage of foreign material, such as dust, water and bacteria, into the eye and that contributes to the lubrication layer that ensures smooth movement of the eyelids over the eyeballs.Monomolecular thin films, additive-derived reaction layers and hard coatings are widely used to tailor tribological properties of surfaces. Nanotribological investigations on these substrates can reveal novel properties regarding the orientation of chemisorbed additive layers, development of rubbing films with time and the relation of frictional properties to surface characteristics in diamond coatings.Depending on the questions to be answered with the tribological research, various micro- and nanotribological measurement methods are applied, including scanning probe microscopy (AFM, FFM), scanning electron microscopy, microtribometer investigations, angle-resolved photoelectron spectroscopy and optical microscopy. Thoughts on the feasibility of a unified approach to energy-dissipating systems and how it might be reached (touching upon new ways of scientific publishing, dealing with over-information regarding the literature and the importance of specialists as well as generalists in tribology) conclude this chapter.


Friction Force Stratum Corneum Lateral Force Reaction Layer Diamond Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the European Commission for supporting part of this work through their WEMESURF Marie Curie Research Training Network. The National University of Malaysia (Universiti Kebangsaan Malaysia) funded part of this work with its leading-edge research project scheme ‘Arus Perdana’.


  1. .
    J.A. Greenwood, J.B.P. Williamson, Contact of nominally flat surfaces, Proc. Roy. Soc. Lond. A295, 300–319 (1966)Google Scholar
  2. .
    D. Tabor, Junction growth in metallic friction, Proc. Roy. Soc. Lond. A259, 378–393 (1959)Google Scholar
  3. .
    G.W. Stachowiak, A.W. Batchelor, in Engineering Tribology, 2nd edn. (Butterworth-Heinemann, Boston, 2001)Google Scholar
  4. .
    B. Bhushan, in Handbook of Nanotechnology, 2nd edn. (Springer, Berlin, 2003)Google Scholar
  5. .
    S. Bec, A. Tonck, J.M. Georges, R.C. Coy, J.C. Bell, G.W. Roper, A relationship between mechanical properties and structures of zinc dithiophosphate anti-wear films, Proc. Roy. Soc. Lon. 455, 4181–4203 (1999)Google Scholar
  6. .
    P.A. Willermet, D.P. Dailey, R.O. Carter, P.J. Schmitz, W. Zhu, Mechanism of formation of antiwear films from zinc dialkyldithiophosphates, Tribol. Int. 28(3), 177–187 (1995)Google Scholar
  7. .
    H. Spedding, R.C. Watkins, Antiwear mechanism of ZDDP’s—1, Tribol. Int. 15(1), 9–12 (1982)Google Scholar
  8. .
    G.M. Bancroft, M. Kasrai, M. Fuller, Z. Yin, Mechanism of tribochemical film formation: Stability of tribo- and thermally-generated ZDDP films, Tribol. Lett. 3, 47–51 (1997)Google Scholar
  9. .
    P.A. Willermet, D.P. Dailey, R.O. Carter III, P.J. Schmitz, W. Zhu, J.C. Bell, D. Park, The composition of lubricant-derived surface layers formed in a lubricated cam/tappet contact II. Effects of adding overbased detergent and dispersant to a simple ZDTP solution, Tribol. Int. 28, 163–175 (1995)Google Scholar
  10. .
    J.S. Sheasby, Z. Nisenholz Rafael, Antiwear characteristics of a commercial secondary ZDDP additives, Tribol. Transact. 36, 399–401 (1933)Google Scholar
  11. .
    J.F. Graham, C. McCague, P.R. Norton, Topography and nanomechanical properties of tribochemical films derived from zinc dialkyl and diaryl dithiophosphates, Tribol. Lett. 6, 149–157 (1999)Google Scholar
  12. .
    B. Bhushan, in Modern Tribology Handbook. Material Coatings, and Industrial Applications, Vol. 2, 1st edn. (CRC Press LLC, Boca Raton, 2001)Google Scholar
  13. .
    M. Marieb, Human Anatomy and Physiology, 3rd edn. (Benjamin/Cummings, Redwood City, 1995)Google Scholar
  14. .
    J.A. Eurell, B.L. Frappier, Dellmann’s Textbook of Veterinary Histology, 6th edn. (Wiley/Blackwell, Ames, 2006)Google Scholar
  15. .
    W. Ming, Lasik Vision Correction (Med World Publishing, Provo, 2000)Google Scholar
  16. .
    H. Kawano, H. Yasue, A. Kitagawa, N. Hirai, T. Yoshida, H. Soejima, S. Miyamoto, M. Nakano, H. Ogawa, Dehydroepiandrosterone supplementation improves endothelial function and insulin sensitivity in men, J. Clin. Endocrinol. Metab. 88, 3190–3195 (2003)Google Scholar
  17. .
    O. Marti, J. Colchero, J. Mlynek, Nanosources and manipulation of atoms under high fields and temperatures, Nanotechnology 1, 253–260 (1991)Google Scholar
  18. .
    G. Mayer, N.M. Amer, Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope, Appl. Phys. Lett. 57(20), 2089–2095 (1990)Google Scholar
  19. .
    B. Bhushan, Nanotribology and Nanomechanics—An Introduction, 2nd edn. (Springer, Berlin, 2005)Google Scholar
  20. .
    B.D. Beake, I.U. Hassan, C.A. Rego, W. Ahmed, Friction force microscopy study of diamond films modified by a glow discharge treatment, Diamond Rel. Mat. 9, 1421–1429 (2000)Google Scholar
  21. .
    D.F. Ogletree, R.W. Carpick, M. Salmeron, Calibration of frictional forces in atomic force microscopy, Rev. Sci. Instrum. 67(9), 3298–3306 (1996)Google Scholar
  22. .
    E. Tocha, H. Schonherr, G. Vancso, Calibration of frictional forces in atomic force microscopy, Langmuir 22(5), 2340–2350 (2006)Google Scholar
  23. .
    M. Indrieri, A. Podestà, G. Bongiorno, D. Marchesi, P. Milani, Adhesive-free colloidal probes for nanoscale force measurements: Production and characterization, Rev. Sci. Instrum. 82, 023708 (2011)Google Scholar
  24. .
    H. Oechsner (ed.), Thin Film and Depth Profile Analysis. Topics in Current Physics, Vol. 37 (Springer, Berlin, Heidelberg, New York, Tokyo, 1984)Google Scholar
  25. .
    R. Behrisch (ed.), Sputtering by Particle Bombardment. Topics in Applied Physics, Vol. 47 (Springer, Berlin, 1981)Google Scholar
  26. .
    A. Tomala, C.A. Vasko, N. Dörr, H. Störi, I.C. Gebeshuber, Oligomer specific lubrication, Proceedings of the 34th Leeds-Lyon Symposium on Tribology, Vol. 30, Lyon, 2007, pp. 2–3Google Scholar
  27. .
    A. Tomala, W.S.M. Werner, I.C. Gebeshuber, N. Dörr, H. Störi, Tribochemistry of monomolecular lubricant films of ethanolamine oligomers, Tribol. Int. 42, 1513–1518 (2009)Google Scholar
  28. .
    A. Tomala, A. Naveira-Suarez, R. Pasaribu, N. Doerr, W.S.M. Werner, H. Stoeri, Behavior of corrosion inhibitors under different tribological contact, Tribol. Lett. 45, 397–409 (2012)Google Scholar
  29. .
    A. Naveira-Suarez, A. Tomala, R. Pasaribu, R. Larsson, I.C. Gebeshuber, Evolution of ZDDP-derived reaction layer morphology with rubbing time, Scanning 31, 1–10 (2010)Google Scholar
  30. .
    H. Fujita, H.A. Spikes, The formation of zinc dithiophosphate antiwear films, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 218(4), 265–277 (2004).Google Scholar
  31. .
    A. Naveira-Suarez, A. Tomala, M. Grahn, M. Zaccheddu, R. Pasaribu, R. Larsson, The influence of base oil polarity and slide-roll ratio on additive-derived reaction layer formation, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 225(7), 565–576 (2011)Google Scholar
  32. .
    M. Aktary, M.T. McDermott, G.A. McAlpine, Morphology and nanomechanical properties of ZDDP antiwear films as a function of tribological contact time, Tribol. Lett. 12(3), 155–162 (2002)Google Scholar
  33. .
    K.A. Dean, B.R. Chalamala, Current saturation mechanisms in carbon nanotube field emitters, Appl. Phys. Lett. 76, 375 (2000)Google Scholar
  34. .
    T. Zehnder, J. Patscheider, Nanocomposite TiC/a-C:H hard coatings. Deposited by reactive PVD, Surf. Coat. Technol. 138, 133–134 (2000)Google Scholar
  35. .
    L.C. Wu, K. Miyoshi, R. Vuppuladhadium, H.E. Jackson, Physical and tribological properties of rapid thermal annealed diamond-like carbon films, Surf. Coat. Technol. 54–55, 576–580 (1992)Google Scholar
  36. .
    R. Haubner, B. Lux, Diamond growth by hot-filament CVD: State of the art, Diamond Rel. Mat. 2, 1277–1294 (1993)Google Scholar
  37. .
    K. Miyoshi, R.L.C. Wu, A. Garscadden, Friction and wear of diamond and diamondlike carbon coatings, Surf. Coat. Technol. 54/55, 428–434 (1992)Google Scholar
  38. .
    J. Robertson, Diamond-like amorphous carbon, Mat. Sci. Eng. R37, 129–281 (2002)Google Scholar
  39. .
    P. Ovaere, S. Lippens, P. Vandenabeele, W. Declercq, The emerging roles of serine protease cascades in the epidermis, Trends Biochem. Sci. 34(9), 453–463 (2009)Google Scholar
  40. .
    M. Haftek, S. Callejon, Y. Sandjeu, K. Padois, F. Falson, F. Pirot, P. Portes, F. Demarne, V. Jannin, Compartmentalization of the human stratum corneum by persistent tight junction-like structures, Exp. Dermatol. 20(8), 617–621 (2011)Google Scholar
  41. .
    T. Igarashi, K. Nishino, S.K. Nayar, The appearance of the human skin: A survey, Found. Trends Comp. Graph. Vis. 3(1), 1–95 (2007)Google Scholar
  42. .
    I.H. Blank, D.J. McAuliffe, Penetration of benzene through human skin, J. Invest. Dermatol. 85, 522–526 (1985)Google Scholar
  43. .
    C. Soussen, D. Brie, C. Goboriaud, C. Kessler, Modelling of force volume images in atomic force microscopy, in 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, Paris, 2008, pp. 1605–1608Google Scholar
  44. .
    B. Bhushan, in Handbook of Micro and Nano Tribology (CRC Press, Boca Raton, 1999)Google Scholar
  45. .
    G. Meyer, N.M. Amer, Simultaneous measurement of lateral and normal forces with an optical—beam—deflection atomic force microscope, Appl. Phys. Lett. 57(20), 2089–2091 (1990)Google Scholar
  46. .
    M. Labardi, M. Allegrini, M. Salerno, C. Frediani, C. Ascoli, Dynamical friction coefficient maps using a scanning force and friction microscope, Appl. Phys. A Solids Surf. 59, 3–10 (1994)Google Scholar
  47. .
    S. Sundararajan, B. Bushan, Topography-induced contributions to friction forces measured using an atomic force/friction force microscope, J. Appl. Phys. 88, 4825 (2000)Google Scholar
  48. .
    A. Podestà, G. Fantoni, P. Milani, Quantitative nanofriction characterization of corrugated surfaces by atomic force microscopy, Rev. Sci. Instrum. 75(5), 1228–1241 (2004)Google Scholar
  49. .
    F. Bowden, D. Tabor, in The Friction and Lubrication of Solids (Clarendon, Oxford, 1950)Google Scholar
  50. .
    A.C. Dunn, T.D. Zaveri, B.G. Keselowsky, W.G. Sawyer, Macroscopic friction coefficient measurements on living endothelial cells, Tribol. Lett. 27, 233–238 (2007)Google Scholar
  51. .
    J.A. Cobb, A.C. Dunn, J. Kwon, M. Sarntinoranont, W.G. Sawyer, R. Tran-Son-Tay, A novel method for low load friction testing on living cells, Biotechnol. Lett. 30, 801–806 (2008)Google Scholar
  52. .
    F.H. Kruszewski, T.L. Walker, L.C. Dipasquale, Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation, Toxicol. Sci. 36(2), 130–140 (1997)Google Scholar
  53. .
    B. Bhushan, M. Nosonovsky, Scale effects in mechanical properties and tribology, in Nanotribology and Nanomechanics—An Introduction, 2nd edn., ed. by B. Bhushan (Springer, Berlin, 2008), pp. 791–840Google Scholar
  54. .
    M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction, Nature 430, 525–528 (2004)Google Scholar
  55. .
    I.C. Gebeshuber, B.Y. Majlis, New ways of scientific publishing and accessing human knowledge inspired by transdisciplinary approaches, Tribol. Surf. Mat. Interf. 4(3), 143–151 (2010)Google Scholar
  56. .
    J. Sandweiss, Essay: The future of scientific publishing, Phys. Rev. Lett. 102(19), 190001(2p) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Agnieszka Tomala
    • 1
  • Hakan Göçerler
    • 1
  • Ille C. Gebeshuber
    • 2
  1. 1.AC2T Research GmbH, Austrian Center of Competence for TribologyNeustadtAustria
  2. 2.Institute of Applied PhysicsVienna University of TechnologyWienAustria

Personalised recommendations