Application of Atomic Force Microscopy in Natural Polymers

  • Alessandra Luzia Da Róz
  • Carolina de Castro Bueno
  • Fabio Minoru Yamaji
  • Ana Lucia Brandl
  • Fabio de Lima Leite
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Natural polymers work in complete harmony, much like an orchestra, because nature finds ways to minimize the amount of materials and energy used to perform its vital functions. Polymer scientists and students are truly nature’s apprentices and should be inspired to develop sustainable innovations based on observations of the natural world. With the current challenges in the world regarding environmental issues, the development of new sources of energy, and the substitution of synthetic polymers for natural materials, the study of polymers has naturally been gaining momentum. Therefore, an understanding of nature allows polymer scientists to reinvent and innovate materials and processes.

References

  1. 1.
    P.K. Hansma, V.B. Elings, O. Marti, C.E. Bracker, Science 242, 209–216 (1988).Google Scholar
  2. 2.
    O. Marti; H.O. Ribi; B. Drake, T.R. Albrecht, C.F. Quate, P.K. Hansma, Science 239, 50–52 (1988).Google Scholar
  3. 3.
    S.J. Hanley, J. Giasson, J-F. Revol, D.G. Gray, Polymer 33, 4639–4642 (1992).Google Scholar
  4. 4.
    D. Fengel, G. Wegener. Wood: Chemistry, Ultrastructure Reactions (Walter de Gruyter, Berlin, 1984).Google Scholar
  5. 5.
    M.L.O. D’Almeida. Celulose e Papel, 2nd edn. (IPT, Sao Paulo, 1988).Google Scholar
  6. 6.
    E. Sjöström. Wood Chemistry: Fundamentals and Applications (Academic, New York, 1981).Google Scholar
  7. 7.
    L.M. Burger, H.G. Richter. Anatomia da Madeira (Livraria Nobel S.A., Sao Paulo, 1991).Google Scholar
  8. 8.
    E. Sjoholma, K. Gustafssona, F. Bertholda, A. Colmsjo, Carbohydr. Polym. 41, 1–7 (2000).Google Scholar
  9. 9.
    B.S. Purkait, D. Ray, S. Sengupta, T. Kar, A. Mohanty, M. Misra, Ind. Eng. Chem. Res. 50, 871–876 (2011).Google Scholar
  10. 10.
    B.M. Cherian, A.L. Leão, S.F. Souza, L.M.M. Costa, G.M. Olyveira, M. Kottaisamy, E.R. Nagarajan, S. Thomas, Carbohydr. Polym. 86, 1790–1798 (2011).Google Scholar
  11. 11.
    C. Zhou, Q. Wu, Y. Yue, Q. Zhang, J. Colloid Interface Sci. 353, 116–123 (2011).Google Scholar
  12. 12.
    L.M. Nevárez, L.B. Casarrubias, O.S. Canto, A. Celzard, V. Fierro, R.I. Gómez, G.G. Sánchez, Carbohydr. Polym. 86, 732–741 (2011).Google Scholar
  13. 13.
    P. Samyn, M. Deconinck, G. Schoukens, D. Stanssens, L. Vonck, H. Van den Abbeele, Prog. Org. Coat. 69, 442–454 (2010).Google Scholar
  14. 14.
    E.M. Teixeira, A.C. Correa, A. Manzoli, F.L. Leite, C.R. Oliveira, L.H.C. Mattoso, Cellulose 17, 595–606 (2010).Google Scholar
  15. 15.
    R. Rusli, K. Shanmuganathan, S.J. Rowan, C. Weder, S.J. Eichhorn, Biomacromolecules 12, 1363–1369 (2011).Google Scholar
  16. 16.
    A. Mandal, D. Chakrabarty, Carbohydr. Polym. 86, 1291–1299 (2011).Google Scholar
  17. 17.
    Y. Boluk, R. Lahiji, L. Zhao, M.T. McDermott, Colloids Surf. A 377, 297–303 (2011).Google Scholar
  18. 18.
    P. Eronen, M. Österberg, S. Heikkinen, M. Tenkanen, J. Laine, Carbohydr. Polym. 86, 1281–1290 (2011).Google Scholar
  19. 19.
    M. Eita, H. Arwin, H. Granberg, L. Wågberg, J. Colloid Interface Sci. 363, 566–572 (2011).Google Scholar
  20. 20.
    F. Fahma, S. Iwamoto, N. Hori, T. Iwata, A. Takemura, Cellulose 18, 443–450 (2011).Google Scholar
  21. 21.
    W. Thielemans, C.R. Warbey, D.A. Walsh, Green Chem. 11, 531–537 (2009).Google Scholar
  22. 22.
    A.L. Da Róz, F.L. Leite, L.V. Pereiro, P.A.P. Nascente, V. Zucolotto, O.N. Oliveira Jr., A.J.F. Carvalho, Carbohydr. Polym. 80, 65–70 (2010).Google Scholar
  23. 23.
    A. Gandini, Macromolecules 41, 9491–9504 (2008).Google Scholar
  24. 24.
    A. Kaushik, M. Singh, G. Verma, Carbohydr. Polym. 82, 337–345 (2010).Google Scholar
  25. 25.
    D. Pasquini, E.M. Teixeira, A.A.S. Curvelo, M.N. Belgacem, A. Dufresne, Ind. Crops Prod. 32, 486–490 (2010).Google Scholar
  26. 26.
    F.L. Leite, P.S.P. Herrmann, A.L. Da Róz, F.C. Ferreira, A.A.S. Curvelo, L.H.C. Mattoso, J. Nanosci. Nanotechnol. 6, 2354–2361 (2006).Google Scholar
  27. 27.
    J.J.G. Van Soest, J.F.G. Vliegenthart, Tibtech 15, 208–213 (1997).Google Scholar
  28. 28.
    K. Poutanen, P. Forssell, Trends Polym. Sci. 4, 128–132 (1996).Google Scholar
  29. 29.
    W.M. Doane, C.Swanson, G. Fanta, Emerging polymeric materials based on starch, in Emerging Technologies for Materials and Chemicals from Biomass, ed. by R.M. Rowell, T.P. Schietz, R. Narayan. ACS Symposium Series 476 (American Chemical Society, Washington, 1992).Google Scholar
  30. 30.
    F.H.G. Peroni-Okita, R.A. Simão, M.B. Cardoso, C.A. Soares, F.M. Lajolo, B.R. Cordenunsi, Carbohydr. Polym. 81, 291–299 (2010).Google Scholar
  31. 31.
    H. Park, S. Xu, K. Seetharaman, Carbohydr. Res. 346, 847–853 (2011).Google Scholar
  32. 32.
    T. Ssaki, K. Kainuma, Plant Cell Rep. 3, 23–26 (1984).Google Scholar
  33. 33.
    A.J.F. Carvalho, A.E. Job, N. Alves, A.A.S. Curvelo, A. Gandini, Carbohydr. Polym. 53, 95–99 (2003).Google Scholar
  34. 34.
    C.G. Biliaderis, Food Technol. 46, 98–145 (1992).Google Scholar
  35. 35.
    J. Jane, S. Lim, I. Paetau, K. Spence, S. Wang, Biodegradable plastics made from agricultural biopolymers, in Polymers from Agricultural Coproducts, by M.L. Fishman, R.B. Friedman, S.J. Huang (American Chemical Society, Washington, 1994).Google Scholar
  36. 36.
    J.J.G. Van Soest, D.B. Borger, J. Appl. Polym. Sci. 64, 631–644 (1997).Google Scholar
  37. 37.
    M.J. Ridout, M.L. Parker, C.L. Hedley, T.Y. Bogracheva, V.J. Morris, Carbohydr. Polym. 65, 64–74 (2006).Google Scholar
  38. 38.
    A. Ptaszek, W. Berski, P. Ptaszek, T. Witczak, U. Repelewicz, M. Grzesik, Carbohydr. Polym. 76, 567–577 (2009).Google Scholar
  39. 39.
    P. Ptaszek, M. Grzesik, J. Food Eng. 82, 227–237 (2007).Google Scholar
  40. 40.
    H. An, H. Y., Z. Liu, Z. Zhang, Food Sci. Technol. 41, 1466–1471 (2008).Google Scholar
  41. 41.
    C.J. Grande, F.G. Torres, C.M. Gomez, O.P. Troncoso, J. Canet-Ferrer, J. Martínez-Pastor, Mater. Sci. Eng. C 29, 1098–1104 (2009).Google Scholar
  42. 42.
    U.V. Lay Ma, J.D. Floros, G.R. Ziegler, Carbohydr. Polym. 83, 1757–1765 (2011).Google Scholar
  43. 43.
    D. Raghavan, A. Emekalam, Polym. Degrad. Stab. 72, 509–517 (2001).Google Scholar
  44. 44.
    R.A.A. Muzzarelli, Chitin, By H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges, Encyclopedia of Polymers Science Engineering, 2nd edn. (Wiley, New York, 1985).Google Scholar
  45. 45.
    G. Roberts, Chitin Chemistry (Macmillan, London, 1992).Google Scholar
  46. 46.
    Y. Pronato, S.K. Rakshit, V.M. Salokhe, Food Sci. Technol. 38, 859–865 (2005).Google Scholar
  47. 47.
    M. Kocun, M. Grandbois, L.A. Cuccia, Colloids Surf. B 82, 470–476 (2011).Google Scholar
  48. 48.
    Q. Li, E. T Dunn, E.W. Grandmaison, M.F.A. Goosen, M. F. A, J. Bioact. Comp. Polym. 7, 370–397 (1992).Google Scholar
  49. 49.
    Y. Wang, L. Chen, Carbohydr. Polym. 83, 1937–1946 (2011).Google Scholar
  50. 50.
    A. Sionkowska, Prog. Polym. Sci. 36, 1254– 1276 (2011).Google Scholar
  51. 51.
    O.B.G. Assis, R. Bernardes-Filho, D.C. Vieira, S.P. Campana-Filho. Int. J. Polym. Mater. 51, 633–638 (2002).Google Scholar
  52. 52.
    F. Shahidi, J.K.F. Arachchi, Y-J. Jeon, Trends Food Sci. Technol.7, 373–377 (1999).Google Scholar
  53. 53.
    S. Roller, N. Covill, Int. J. Food Microbiol. 47, 67–77 (1999).Google Scholar
  54. 54.
    K. Kurita, Polym. Degrad. Stab. 59, 117–120 (1998).Google Scholar
  55. 55.
    A. Bégin, M-R.V. Calsteren, Int. J. Biol. Macromol. 26, 63–67 (1999).Google Scholar
  56. 56.
    X.D. Liu, N. Nishi, S. Tokura, N. Sakairi, Carbohydr. Polym. 44, 233–238 (2001).Google Scholar
  57. 57.
    N.S. Rejinolda, M. Muthunarayanana, K. Muthuchelianb, K.P. Chennazhia, S.V. Naira, R. Jayakumara, Carbohydr. Polym. 84, 407–416 (2011).Google Scholar
  58. 58.
    A. Sionkowska, Prog. Polym. Sci. 36, 1254–1276 (2011).Google Scholar
  59. 59.
    R.M.V. Kumar, React. Funct. Polym. 46, 1–27 (2000).Google Scholar
  60. 60.
    R.M.V. Kumar, Bull. Mater. Sci. 22, 905–915 (1999).Google Scholar
  61. 61.
    B. Krajewska, Enzyme Microb. Technol. 35, 126–139 (2004).Google Scholar
  62. 62.
    P.K. Dutta, J. Dutta, V.S. Tripathi, J. Sci. Ind. Res. 63, 20–31 (2004).Google Scholar
  63. 63.
    Y. Ping, C. Liu, Z. Zhang, K.L. Liu, J. Chen, J. Li, Biomaterials 32, 8328–8341 (2011).Google Scholar
  64. 64.
    S. Coelho, S. Moreno-Flores, J.L. Toca-Herrera, M.A.N. Coelho, M.C. Pereira, S. Rocha, J. Colloid Interface Sci. 363, 450–455 (2011).Google Scholar
  65. 65.
    T. Tree-udom, S.P. Wanichwecharungruang, J. Seemork, S. Arayachukeat, Carbohydr. Polym. 86, 1602–1609 (2011).Google Scholar
  66. 66.
    D. Kołodyńska, Chem. Eng. J. 173, 520– 529 (2011).Google Scholar
  67. 67.
    N.B. Milosavljević, M.D. Ristić, A.A. Perić-Grujić, J.M. Filipović, S.B. Štrbac, Z.L. Rakočević, M.T.K. Krušić, Colloids Surf. A. 388, 59–69 (2011).Google Scholar
  68. 68.
    J.T. Sakdapipanich, J. Biosci. Bioeng. 103, 287–292 (2007).Google Scholar
  69. 69.
    M.M. Rippel, F. Galembeck, J. Braz. Chem. Soc. 20, 1024–1030 (2009).Google Scholar
  70. 70.
    Z-F. Wang, Z. Peng, S-D. Li, H. Lin, K-X. Zhang, X-D. She, X. Fu, Compos. Sci. Technol. 69, 1797–1803 (2009).Google Scholar
  71. 71.
    C. W. Burr. Synthetic Polyisoprene (RT Vanderbilt Handbook, Ohio, 2004).Google Scholar
  72. 72.
    C.A.R. Costa, M.M. Rippel, F. Galembeck, Polímeros 12, 188–192 (2002).Google Scholar
  73. 73.
    Z. Adamczyk, M. Nattich, M. Wasilewska, Adsorption 16, 259–269 (2010).Google Scholar
  74. 74.
    J. Revilla, A. Elaissari, P. Carriere, C. Pichot, J. Colloid Interface Sci. 180, 405–412 (1996).Google Scholar
  75. 75.
    S. Fujii, M. Suzaki, Y. Nakamura, K. Sakai, N. Ishida, S. Biggs, Polymer 51, 6240–6247 (2010).Google Scholar
  76. 76.
    O. Couteau, G. Roebben, Meas. Sci. Technol. 22, 065101 (2011).Google Scholar
  77. 77.
    D. Wang, S. Fujinami, K. Nakajima, K-I. Niihara, S. Inukai, H. Ueki, A. Magario, T. Noguchi, M. Endo, T. Nishi, Carbon 48, 3708–3714 (2010).Google Scholar
  78. 78.
    D. Wang, S. Fujinami, K. Nakajima, S. Inukai, H. Ueki, A. Magario, T. Nogochi, M., Endo, T. Nishi, Polymer 51, 2455–2459 (2010).Google Scholar
  79. 79.
    H. Dohi, M. Sakai, S. Tai, H. Nakamae, H. Kimura, M. Kotani, H. Kishimoto, Y.M. Kobe, Test. Meas. 24–27 (2007).Google Scholar
  80. 80.
    I. Karapaginoutis, W.W. Gerberich, Surf. Sci. 594, 192–202 (2005).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alessandra Luzia Da Róz
    • 1
  • Carolina de Castro Bueno
    • 1
  • Fabio Minoru Yamaji
    • 1
  • Ana Lucia Brandl
    • 1
  • Fabio de Lima Leite
    • 1
  1. 1.University of São Carlos (UFSCar) – Campus SorocabaSão PauloBrazil

Personalised recommendations