Advertisement

On the Differential Security of Multivariate Public Key Cryptosystems

  • Daniel Smith-Tone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7071)

Abstract

Since the discovery of an algorithm for factoring and computing discrete logarithms in polynomial time on a quantum computer, the cryptographic community has been searching for an alternative for security in the approaching post-quantum world. One excellent candidate is multivariate public key cryptography. Though the speed and parameterizable nature of such schemes is desirable, a standard metric for determining the security of a multivariate cryptosystem has been lacking. We present a reasonable measure for security against the common differential attacks and derive this measurement for several modern multivariate public key cryptosystems.

Keywords

Matsumoto-Imai multivariate public key cryptography differential symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comp. 26, 1484 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE Implementation of Multivariate PKCs on Modern X86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Chen, A.I.-T., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M., Yang, B.-Y.: Practical-Sized Instances of Multivariate PKCs: Rainbow, TTS, and ℓIC-Derivatives. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 95–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Yang, B.-Y., Cheng, C.-M., Chen, B.-R., Chen, J.-M.: Implementing Minimized Multivariate PKC on Low-Resource Embedded Systems. In: Clark, J.A., Paige, R.F., Polack, F.A.C., Brooke, P.J. (eds.) SPC 2006. LNCS, vol. 3934, pp. 73–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.-s.: Square, a New Multivariate Encryption Scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 252–264. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Baena, J., Clough, C., Ding, J.: Square-Vinegar Signature Scheme. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 17–30. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Billet, O., Macario-Rat, G.: Cryptanalysis of the Square Cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 451–468. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical Cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Smith-Tone, D.: Properties of the Discrete Differential with Cryptographic Applications. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 1–12. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  12. 12.
    Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  13. 13.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Patarin, J.: The oil and vinegar algorithm for signatures. Presented at the Dagsthul Workshop on Cryptography (1997)Google Scholar
  15. 15.
    Ding, J., Dubois, V., Yang, B.Y., Chen, C.H.O., Cheng, C.M.: Could SFLASH be Repaired? In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 691–701. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Smith-Tone
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of LouisvilleLouisvilleUSA
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations