Statistical Decoding of Codes over \(\mathbb{F}_q\)

  • Robert Niebuhr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7071)

Abstract

In this paper we analyze statistical decoding over a finite field \(\mathbb{F}_q\). We generalize Overbeck’s binary statistical decoding algorithm to codes over \(\mathbb{F}_q\), and analyze the success probability of our algorithm. We provide experimental data for different field sizes. In addition to that, we describe two techniques how knowledge about structure of the code or of the solution can be used in order to speed up the decoding algorithm.

Keywords

Statistical decoding general decoding code-based cryptography public-key cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Augot, D., Finiasz, M., Sendrier, N.: A Family of Fast Syndrome Based Cryptographic Hash Functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 64–83. Springer, Heidelberg (2005); Cited on page 7CrossRefGoogle Scholar
  2. 2.
    Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of the McEliece Cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009); Cited on page 6 CrossRefGoogle Scholar
  3. 3.
    Bernstein, D.J., Lange, T., Peters, C.: Ball-collision decoding. Cryptology ePrint Archive, Report 2010/585 (2010), http://eprint.iacr.org/2010/585.pdf; Cited on page 1
  4. 4.
    Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Faster 2-regular information-set decoding. Cryptology ePrint Archive, Report 2011/120 (2011), http://eprint.iacr.org/; Cited on page 7
  5. 5.
    Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: Improved code-based identification scheme. In: SAC 2010 (2010), http://arxiv.org/abs/1001.3017v1; Cited on page 6
  6. 6.
    Cheung, K.-M.: The weight distribution and randomness of linear codes. TDA Progress Report 42–97, Communications Systems Research Section (1989); Cited on page 7 Google Scholar
  7. 7.
    Al Jabri, A.: A Statistical Decoding Algorithm for General Linear Block Codes. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 1–8. Springer, Heidelberg (2001); Cited on page 1 CrossRefGoogle Scholar
  8. 8.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland Mathematical Library, vol. 16 (1977); Cited on page 7 Google Scholar
  9. 9.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DNS Progress Report, pp. 114–116 (1978); Cited on page 1 Google Scholar
  10. 10.
    Minder, L., Sinclair, A.: The extended k-tree algorithm. In: SODA, pp. 586–595 (2009); Cited on page 1 Google Scholar
  11. 11.
    Niebuhr, R., Cayrel, P.-L., Bulygin, S., Buchmann, J.: On lower bounds for Information Set Decoding over \(\mathbb{F}_{q}\). In: SCC 2010, RHUL, London, UK, pp. 143–158 (2010); Cited on page 1 and 9Google Scholar
  12. 12.
    Niebuhr, R., Cayrel, P.-L., Bulygin, S., Buchmann, J.: On lower bounds for Information Set Decoding over \(\mathbb{F}_{q}\). and on the effect of Partial Knowledge. Submitted to Math in CS, SCC 2010 (2011); Cited on page 9Google Scholar
  13. 13.
    Overbeck, R.: Statistical Decoding Revisited. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 283–294. Springer, Heidelberg (2006); Cited on page 1, 7 and 10 CrossRefGoogle Scholar
  14. 14.
    Peters, C.: Information-set decoding for linear codes over \(\mathbb{F}_{q}\). In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010); Cited on page 9CrossRefGoogle Scholar
  15. 15.
    Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions on Information Theory, 5–9 (1962); Cited on page 9 Google Scholar
  16. 16.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, pp. 124–134. IEEE Press (1994); Cited on page 1 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Robert Niebuhr
    • 1
  1. 1.Fachbereich Informatik Kryptographie und ComputeralgebraTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations