Advertisement

Separating Short Structure-Preserving Signatures from Non-interactive Assumptions

  • Masayuki Abe
  • Jens Groth
  • Miyako Ohkubo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7073)

Abstract

Structure-preserving signatures are signatures whose public keys, messages, and signatures are all group elements in bilinear groups, and the verification is done by evaluating pairing product equations. It is known that any structure-preserving signature in the asymmetric bilinear group setting must include at least 3 group elements per signature and a matching construction exists.

In this paper, we prove that optimally short structure preserving signatures cannot have a security proof by an algebraic reduction that reduces existential unforgeability against adaptive chosen message attacks to any non-interactive assumptions. Towards this end, we present a handy characterization of signature schemes that implies the separation.

Keywords

Structure-Preserving Signatures Algebraic Reduction Meta-Reduction 

References

  1. 1.
    Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-Trapdoor Anonymous Tags for Traceable Signatures. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 183–200. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Abe, M., Ohkubo, M.: A Framework for Universally Composable Non-Committing Blind Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 435–450. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS 2001, pp. 106–115 (2001)Google Scholar
  6. 6.
    Bellare, M., Palacio, A.: The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Boneh, D., Venkatesan, R.: Breaking RSA May Not be Equivalent to Factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Bresson, E., Monnerat, J., Vergnaud, D.: Separation Results on the ”One-More” Computational Problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 71–87. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Cathalo, J., Libert, B., Yung, M.: Group Encryption: Non-Interactive Realization in the Standard Model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 179–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Coron, J.-S.: Optimal Security Proofs for PSS and Other Signature Schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Damgård, I.: Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)Google Scholar
  13. 13.
    Dodis, Y., Haitner, I., Tentes, A.: On the (in)security of RSA signatures. ePrint 2011/087 (2011)Google Scholar
  14. 14.
    Dodis, Y., Oliveira, R., Pietrzak, K.: On the Generic Insecurity of the Full Domain Hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Fischlin, M., Schröder, D.: On the Impossibility of Three-Move Blind Signature Schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Fuchsbauer, G.: Automorphic signatures in bilinear groups. ePrint 2009/320 (2009)Google Scholar
  17. 17.
    Fuchsbauer, G.: Commuting Signatures and Verifiable Encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. ePrint 2006/165 (2006)Google Scholar
  19. 19.
    Garg, S., Bhaskar, R., Lokam, S.V.: Improved Bounds on Security Reductions for Discrete Log Based Signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comp. 17(2), 281–308 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Green, M., Hohenberger, S.: Universally Composable Adaptive Oblivious Transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Groth, J.: Simulation-Sound Nizk Proofs for a Practical Language and Constant Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Groth, J., Sahai, A.: Efficient Non-Interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Hada, S., Tanaka, T.: On the Existence of 3-Round Zero-Knowledge Protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 369–408. Springer, Heidelberg (1998); Full version available from IACR e-print archive 1999/009 Google Scholar
  26. 26.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: STOC 1989, pp. 44–61. ACM (1989)Google Scholar
  27. 27.
    Katz, J., Schröder, D., Yerukhimovich, A.: Impossibility of Blind Signatures from One-Way Permutations. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 615–629. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Malkin, T., Moriarty, R., Yakovenko, N.: Generalized Environmental Security from Number Theoretic Assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Paillier, P.: Impossibility Proofs for RSA Signatures in the Standard Model. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 31–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Paillier, P., Villar, J.L.: Trading One-Wayness against Chosen-Ciphertext Security in Factoring-Based Encryption. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 252–266. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. 32.
    Pass, R.: Limits of provable security from standard assumptions. In: STOC 2011, pp. 109–118. ACM (2011)Google Scholar
  33. 33.
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of Reducibility Between Cryptographic Primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  34. 34.
    Simon, D.R.: Finding Collisions on a One-Way Street: Can Secure Hash Functions be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Masayuki Abe
    • 1
  • Jens Groth
    • 2
  • Miyako Ohkubo
    • 3
  1. 1.NTT Information Sharing Platform LaboratoriesNTT CorporationJapan
  2. 2.University College LondonU.K.
  3. 3.Security Architecture Laboratory, NSRINICTJapan

Personalised recommendations