Natural Generalizations of Threshold Secret Sharing

  • Oriol Farràs
  • Carles Padró
  • Chaoping Xing
  • An Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7073)

Abstract

We present new families of access structures that, similarly to the multilevel and compartmented access structures introduced in previous works, are natural generalizations of threshold secret sharing. Namely, they admit an ideal linear secret sharing schemes over every large enough finite field, they can be described by a small number of parameters, and they have useful properties for the applications of secret sharing. The use of integer polymatroids makes it possible to find many new such families and it simplifies in great measure the proofs for the existence of ideal secret sharing schemes for them.

Keywords

Cryptography secret sharing ideal secret sharing schemes multipartite secret sharing integer polymatroids 

References

  1. 1.
    Ball, S.: On large subsets of a finite vector space in which every subset of basis size is a basis. Manuscript, available at the author’s webpage (2010)Google Scholar
  2. 2.
    Beimel, A.: Secret-Sharing Schemes: A Survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Beimel, A., Tassa, T., Weinreb, E.: Characterizing Ideal Weighted Threshold Secret Sharing. SIAM J. Discrete Math. 22, 360–397 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Benaloh, J., Leichter, J.: Generalized Secret Sharing and Monotone Functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Beutelspacher, A., Wettl, F.: On 2-level secret sharing. Des. Codes Cryptogr.  3, 127–134 (1993)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)Google Scholar
  7. 7.
    Bloom, J.R.: A note on Superfast Threshold Schemes. Preprint, Texas A&M. Univ., Dept. of Mathematics (1981)Google Scholar
  8. 8.
    Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Math. and Combin. Comput. 9, 105–113 (1989)MathSciNetGoogle Scholar
  9. 9.
    Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptology 4, 123–134 (1991)MATHGoogle Scholar
  10. 10.
    Collins, M.J.: A Note on Ideal Tripartite Access Structures. Cryptology ePrint Archive, Report 2002/193 (2002), http://eprint.iacr.org/2002/193
  11. 11.
    Csirmaz, L.: The size of a share must be large. J. Cryptology 10, 223–231 (1997)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Farràs, O., Martí-Farré, J., Padró, C.: Ideal Multipartite Secret Sharing Schemes. Cryptology (2011) (Online First)Google Scholar
  13. 13.
    Farràs, O., Metcalf-Burton, J.R., Padró, C., Vázquez, L.: On the Optimization of Bipartite Secret Sharing Schemes. Des. Codes Cryptogr. (2011) (Online First)Google Scholar
  14. 14.
    Farràs, O., Padró, C.: Ideal Hierarchical Secret Sharing Schemes. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 219–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Giuletti, M., Vincenti, R.: Three-level secret sharing schemes from the twisted cubic. Discrete Mathematics 310, 3236–3240 (2010)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Herranz, J., Sáez, G.: New Results on Multipartite Access Structures. IEEE Proceedings on Information Security 153, 153–162 (2006)CrossRefGoogle Scholar
  17. 17.
    Herzog, J., Hibi, T.: Discrete polymatroids. J. Algebraic Combin. 16, 239–268 (2002)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing any access structure. In: Proc. IEEE Globecom 1987, pp. 99–102 (1987)Google Scholar
  19. 19.
    Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. Inform. Theory 29, 35–41 (1983)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Kothari, S.C.: Generalized Linear Threshold Scheme. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 231–241. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  21. 21.
    Martí-Farré, J., Padró, C.: On Secret Sharing Schemes, Matroids and Polymatroids. J. Math. Cryptol. 4, 95–120 (2010)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6-th Joint Swedish-Russian Workshop on Information Theory, Molle, Sweden, pp. 269–279 (August 1993)Google Scholar
  23. 23.
    Ng, S.-L.: Ideal secret sharing schemes with multipartite access structures. In: IEEE Proc.-Commun., vol. 153, pp. 165–168 (2006)Google Scholar
  24. 24.
    Oxley, J.G.: Matroid theory. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1992)Google Scholar
  25. 25.
    Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inform. Theory 46, 2596–2604 (2000)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Rao B.V., R., Sarma M.N., J.: On the Complexity of Matroid Isomorphism Problems. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 286–298. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Segre, B.: Curve razionali normali e k-archi negli spazi finiti. Ann. Mat. Pura Appl. 39, 357–379 (1955)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Springer, Berlin (2003)Google Scholar
  29. 29.
    Shamir, A.: How to share a secret. Commun. of the ACM 22, 612–613 (1979)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Simmons, G.J.: How to (Really) Share a Secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, Heidelberg (1990)Google Scholar
  31. 31.
    Tassa, T.: Hierarchical Threshold Secret Sharing. J. Cryptology 20, 237–264 (2007)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Tassa, T., Dyn, N.: Multipartite Secret Sharing by Bivariate Interpolation. J. Cryptology 22, 227–258 (2009)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)MATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Oriol Farràs
    • 1
    • 2
  • Carles Padró
    • 3
  • Chaoping Xing
    • 3
  • An Yang
    • 3
  1. 1.Universitat Rovira i VirgiliTarragonaSpain
  2. 2.Ben Gurion UniversityBe’er ShevaIsrael
  3. 3.Nanyang Technological UniversitySingapore

Personalised recommendations