Constant-Rounds, Linear Multi-party Computation for Exponentiation and Modulo Reduction with Perfect Security

  • Chao Ning
  • Qiuliang Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7073)


Bit-decomposition is an important primitive in multi-party computation (MPC). With the help of bit-decomposition, we will be able to construct constant-rounds protocols for various MPC problems, such as equality test, comparison, public modulo reduction and private exponentiation, which are four main applications of bit-decomposition. However, when considering perfect security, bit-decomposition does not have a linear communication complexity; thus any protocols involving bit-decomposition inherit this inefficiency. Constructing protocols for MPC problems without relying on bit-decomposition is a meaningful work because this may provide us with perfectly secure protocols with linear communication complexity. It is already proved that equality test, comparison and public modulo reduction can be solved without involving bit-decomposition and the communication complexity can be reduced to linear. However, it remains an open problem whether private exponentiation could be done without relying on bit-decomposition. In this paper, maybe somewhat surprisingly, we show that it can. That is to say, we construct a constant-rounds, linear, perfectly secure protocol for private exponentiation without relying on bit-decomposition though it seems essential to this problem.

In a recent work, Ning and Xu proposed a generalization of bit-decomposi-tion and, as a simplification of their generalization, they also proposed a linear protocol for public modulo reduction. In this paper, we show that their generalization can be further generalized; more importantly, as a simplification of our further generalization, we propose a public modulo reduction protocol which is more efficient than theirs.


Multi-party Computation Perfectly Secure Constant- Rounds Linear Exponentiation Modulo Reduction Bit-Decomposition 


  1. 1.
    Algesheimer, J., Camenisch, J.L., Shoup, V.: Efficient Computation Modulo A Shared Secret with Application to the Generation of Shared Safe-Prime Products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number of rounds of interaction. In: 8th ACM Symposium on Principles of Distributed Computing, pp. 201–209. ACM Press, New York (1989)CrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Noncryptographic Fault-Tolerant Distributed Computations. In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New York (1988)Google Scholar
  4. 4.
    Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded Fan-In Circuits and Associative Functions. In: 15th Annual ACM Symposium on Theory of Computing, pp. 52–60. ACM Press, New York (1983)Google Scholar
  6. 6.
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure Constant-Rounds Multi-Party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Damgård, I.B., Nielsen, J.B.: Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Guajardo, J., Mennink, B., Schoenmakers, B.: Modulo Reduction for Paillier Encryptions and Application to Secure Statistical Analysis. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 375–382. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game or A Complete Theorem for Protocols with Honest Majority. In: 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, New York (1987)Google Scholar
  10. 10.
    Gennaro, R., Rabin, M.O., Rabin, T.: Simplified Vss and Fast-Track Multiparty Computations with Applications to Threshold Cryptography. In: 17th ACM Symposium on Principles of Distributed Computing, pp. 101–110. ACM Press, New York (1998)Google Scholar
  11. 11.
    Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Comparison without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Ning, C., Xu, Q.: Multiparty Computation for Modulo Reduction without Bit-Decomposition and A Generalization to Bit-Decomposition. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Ning, C., Xu, Q.: Constant-Rounds, Linear Multi-party Computation for Exponentiation and Modulo Reduction with Perfect Security. Cryptology ePrint Archive, Report 2011/069 (2011),
  14. 14.
    Reistad, T., Toft, T.: Linear, Constant-Rounds Bit-Decomposition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 245–257. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Shamir, A.: How to Share A Secret. Communications of the ACM 22(11), 612–613 (1979)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Schoenmakers, B., Tuyls, P.: Efficient Binary Conversion for Paillier Encrypted Values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Toft, T.: Primitives and Applications for Multi-party Computation. PhD thesis, University of Aarhus (2007),
  18. 18.
    Toft, T.: Constant-Rounds, Almost-Linear Bit-Decomposition of Secret Shared Values. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357–371. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Chao Ning
    • 1
  • Qiuliang Xu
    • 1
  1. 1.School of Computer Science and TechnologyShandong UniversityJinanChina

Personalised recommendations