Advertisement

Counting Points on Genus 2 Curves with Real Multiplication

  • Pierrick Gaudry
  • David Kohel
  • Benjamin Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7073)

Abstract

We present an accelerated Schoof-type point-counting algorithm for curves of genus 2 equipped with an efficiently computable real multiplication endomorphism. Our new algorithm reduces the complexity of genus 2 point counting over a finite field \(\mathbb{F}_{q}\) of large characteristic from \({\widetilde{O}}(\log^8 q)\) to \({\widetilde{O}}(\log^5 q)\). Using our algorithm we compute a 256-bit prime-order Jacobian, suitable for cryptographic applications, and also the order of a 1024-bit Jacobian.

Keywords

Modulus Space Class Number Minimal Polynomial Principal Ideal Hyperelliptic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bending, P.R.: Curves of genus 2 with \(\sqrt{2}\) multiplication. Ph. D. thesis. University of Oxford (1998)Google Scholar
  2. 2.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cantor, D.G.: Computing in the Jacobian of a hyperelliptic curve. Math. Comp. 48(177), 95–101 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cantor, D.G.: On the analogue of the division polynomials for hyperelliptic curves. J. Reine Angew. Math. 447, 91–145 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups of number fields. In: Number Theory, Noordwijkerhout 1983. Lecture Notes in Math., vol. 1068, pp. 33–62 (1984)Google Scholar
  6. 6.
    Galbraith, S.D., Harrison, M.C., Mireles Morales, D.J.: Efficient Hyperelliptic Arithmetic Using Balanced Representation for Divisors. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 342–356. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Gaudry, P.: Fast genus 2 arithmetic based on Theta functions. J. Math. Crypt. 1, 243–265 (2007)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Gaudry, P., Schost, É.: Construction of Secure Random Curves of Genus 2 Over Prime Fields. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 239–256. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Gaudry, P., Schost, É.: A Low-Memory Parallel Version of Matsuo, Chao, and Tsujii’s Algorithm. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Gaudry, P., Schost, É.: Genus 2 point counting over prime fields. Preprint (2010), http://hal.inria.fr/inria-00542650
  11. 11.
    Gruenewald, D.: Computing Humbert surfaces and applications. In: Arithmetic, Geometry, Cryptography and Coding Theory 2009. Contemp. Math., vol. 521, pp. 59–69 (2010)Google Scholar
  12. 12.
    Kohel, D.R., Smith, B.A.: Efficiently Computable Endomorphisms for Hyperelliptic Curves. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 495–509. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Matsuo, K., Chao, J., Tsujii, S.: An Improved Baby Step Giant Step Algorithm for Point Counting of Hyperelliptic Curves over Finite Fields. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 461–474. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Mestre, J.-F.: Familles de courbes hyperelliptiques à multiplications réelles’. In: Arithmetic algebraic geometry. Texel (1989); Progr. Math., vol. 89. Birkha ̈user, Boston (1991) Google Scholar
  15. 15.
    Mestre, J.-F.: Couples de jacobiennes isogènes de courbes hyperelliptiques de genre arbitraire. Preprint, arXiv math.AG/0902.3470 v1 (2009)Google Scholar
  16. 16.
    Park, Y.-H., Jeong, S., Lim, J.: Speeding Up Point Multiplication on Hyperelliptic Curves with Efficiently-Computable Endomorphisms. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 197–208. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Pila, J.: Frobenius maps of abelian varieties and finding roots of unity in finite fields. Math. Comp. 55(192), 745–763 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Rück, H.-G.: Abelian surfaces and jacobian varieties over finite fields. Compositio Math. 76(3), 351–366 (1990)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Shoup, V.: NTL: A Library for doing Number Theory, http://www.shoup.net/ntl/
  20. 20.
    Takashima, K.: A new type of fast endomorphisms on Jacobians of hyperelliptic curves and their cryptographic application. IEICE Trans. Fundamentals E89-A(1), 124–133 (2006)CrossRefGoogle Scholar
  21. 21.
    Tautz, W., Top, J., Verberkmoes, A.: Explicit hyperelliptic curves with real multiplication and permutation polynomials. Canad. J. Math. 43(5), 1055–1064 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Wilson, J.: Curves of genus 2 with real multiplication by a square root of 5. Ph.D. thesis, University of Oxford (1998)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Pierrick Gaudry
    • 1
  • David Kohel
    • 2
  • Benjamin Smith
    • 3
  1. 1.LORIACNRS / INRIA / Nancy UniversitéVandoeuvre lès NancyFrance
  2. 2.Institut de Mathématiques de LuminyUniversité de la MéditerranéeMarseille Cedex 9France
  3. 3.INRIA Saclay–Île-de-France, Laboratoire d’Informatique de l’École polytechnique (LIX)Palaiseau CedexFrance

Personalised recommendations