Advertisement

Efficient Zero-Knowledge Arguments from Two-Tiered Homomorphic Commitments

  • Jens Groth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7073)

Abstract

We construct practical and efficient zero-knowledge arguments with sublinear communication complexity. The arguments have perfect completeness, perfect special honest verifier zero-knowledge and computational soundness. Our zero-knowledge arguments rely on two-tiered homomorphic commitments for which pairing-based constructions already exist.

As a concrete application of our new zero-knowledge techniques, we look at the case of range proofs. To demonstrate a committed value belongs to a specific N-bit integer interval we only need to communicate \(O(N^{\frac{1}{3}})\) group elements.

Keywords

Zero-knowledge arguments sublinear communication circuit satisfiability range proofs two-tiered homomorphic commitments 

References

  1. 1.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM 45(1), 70–122 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short PCPs verifiable in polylogarithmic time. In: IEEE Conference on Computational Complexity, pp. 120–134 (2005)Google Scholar
  5. 5.
    Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Chaabouni, R., Lipmaa, H., Shelat, A.: Additive Combinatorics and Discrete Logarithm Based Range Protocols. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 336–351. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proof of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Damgård, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Jurik, M.J.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3) (2007)Google Scholar
  12. 12.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols using signatures. Journal of Cryptology 19(2), 169–209 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gentry, C.: A fully homomorphic encryption scheme. PhD thesis. Stanford University (2009)Google Scholar
  15. 15.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  16. 16.
    Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM Journal of Computing 25(1), 169–192 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: STOC, pp. 113–122 (2008)Google Scholar
  18. 18.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proofs. SIAM Journal of Computing 18(1), 186–208 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Groth, J.: Honest verifier zero-knowledge arguments applied. Dissertation Series DS-04-3, BRICS, PhD thesis. xii+119 pp (2004)Google Scholar
  20. 20.
    Groth, J.: Non-interactive Zero-Knowledge Arguments for Voting. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Groth, J.: Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive, Report 2009/007 (2009)Google Scholar
  22. 22.
    Groth, J.: Linear Algebra with Sub-Linear Zero-Knowledge Arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Groth, J.: Minimizing non-interactive zero-knowledge proofs using fully homomorphic encryption. Cryptology ePrint Archive, Report 2011/012 (2011)Google Scholar
  24. 24.
    Groth, J., Ishai, Y.: Sub-Linear Zero-Knowledge Argument for Correctness of a Shuffle. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure multiparty computation. SIAM Journal of Computing 39(3), 1121–1152 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC, pp. 723–732 (1992)Google Scholar
  28. 28.
    Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. Journal of Cryptology 16(3), 143–184 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey Auctions Without Threshold Trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  32. 32.
    Schnorr, C.-P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Jens Groth
    • 1
  1. 1.University College LondonUK

Personalised recommendations