Resettable Cryptography in Constant Rounds – The Case of Zero Knowledge

  • Yi Deng
  • Dengguo Feng
  • Vipul Goyal
  • Dongdai Lin
  • Amit Sahai
  • Moti Yung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7073)

Abstract

A fundamental question in cryptography deals with understanding the role that randomness plays in cryptographic protocols and to what extent it is necessary. One particular line of works was initiated by Canetti, Goldreich, Goldwasser, and Micali (STOC 2000) who introduced the notion of resettable zero-knowledge, where the protocol must be zero-knowledge even if a cheating verifier can reset the prover and have several interactions in which the prover uses the same random tape. Soon afterwards, Barak, Goldreich, Goldwasser, and Lindell (FOCS 2001) studied the setting where the verifier uses a fixed random tape in multiple interactions. Subsequent to these works, a number of papers studied the notion of resettable protocols in the setting where only one of the participating parties uses a fixed random tape multiple times. The notion of resettable security has been studied in two main models: the plain model and the bare public key model (also introduced in the above paper by Canetti et. al.).

In a recent work, Deng, Goyal and Sahai (FOCS 2009) gave the first construction of a simultaneous resettable zero-knowledge protocol where both participants of the protocol can reuse a fixed random tape in any (polynomial) number of executions. Their construction however required O(nε) rounds of interaction between the prover and the verifier. Both in the plain as well as the BPK model, this construction remain the only known simultaneous resettable zero-knowledge protocols.

In this work, we study the question of round complexity of simultaneous resettable zero-knowledge in the BPK model. We present a constant round protocol in such a setting based on standard cryptographic assumptions. Our techniques are significantly different from the ones used by Deng, Goyal and Sahai.

References

  1. [Bar01]
    Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)Google Scholar
  2. [BGGL01]
    Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-knowledge and its applications. In: FOCS, pp. 116–125 (2001)Google Scholar
  3. [BLV03]
    Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowledge. In: FOCS, pp. 384–393 (2003)Google Scholar
  4. [CGGM00]
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract). In: STOC, pp. 235–244 (2000)Google Scholar
  5. [CPV04]
    Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-Round Resettable Zero Knowledge with Concurrent Soundness in the Bare Public-Key Model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237–253. Springer, Heidelberg (2004)Google Scholar
  6. [DGS09]
    Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture and a new non-black-box simulation strategy. In: FOCS, pp. 251–260. IEEE Computer Society (2009)Google Scholar
  7. [DL07a]
    Deng, Y., Lin, D.: Instance-Dependent Verifiable Random Functions and Their Application to Simultaneous Resettability. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 148–168. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. [DL07b]
    Deng, Y., Lin, D.: Resettable Zero Knowledge with Concurrent Soundness in the Bare Public-Key Model Under Standard Assumption. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 123–137. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. [DN00]
    Dwork, C., Naor, M.: Zaps and their applications. In: FOCS, pp. 283–293 (2000)Google Scholar
  10. [DOPS04]
    Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryptography with imperfect randomness. In: FOCS, pp. 196–205. IEEE Computer Society (2004)Google Scholar
  11. [GK96]
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for np. J. Cryptology 9(3), 167–190 (1996)CrossRefMATHMathSciNetGoogle Scholar
  12. [GO94]
    Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptology 7(1), 1–32 (1994)CrossRefMATHMathSciNetGoogle Scholar
  13. [GS09]
    Goyal, V., Sahai, A.: Resettably Secure Computation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 54–71. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. [KLRZ08]
    Kalai, Y.T., Li, X., Rao, A., Zuckerman, D.: Network extractor protocols. In: FOCS, pp. 654–663. IEEE Computer Society (2008)Google Scholar
  15. [KP01]
    Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-loalgorithm rounds. In: STOC, pp. 560–569 (2001)Google Scholar
  16. [MR01a]
    Micali, S., Reyzin, L.: Min-Round Resettable Zero-Knowledge in the Public-Key Model. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 373–393. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. [MR01b]
    Micali, S., Reyzin, L.: Soundness in the Public-Key Model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. [PRS02]
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)Google Scholar
  19. [RK99]
    Richardson, R., Kilian, J.: On the Concurrent Composition of Zero-Knowledge Proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)Google Scholar
  20. [YZ07]
    Yung, M., Zhao, Y.: Generic and Practical Resettable Zero-Knowledge in the Bare Public-Key Model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 129–147. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. [ZDLZ03]
    Zhao, Y., Deng, X., Lee, C.H., Zhu, H.: Resettable Zero-Knowledge in the Weak Public-Key Model. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 123–139. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Yi Deng
    • 1
    • 2
  • Dengguo Feng
    • 3
  • Vipul Goyal
    • 2
  • Dongdai Lin
    • 3
  • Amit Sahai
    • 4
  • Moti Yung
    • 5
  1. 1.NTUSingapore
  2. 2.SKLOIS, Institute of SoftwareCASChina
  3. 3.MSRIndia
  4. 4.UCLAUSA
  5. 5.Google Inc.USA

Personalised recommendations