Advertisement

Full Reduction at Full Throttle

  • Mathieu Boespflug
  • Maxime Dénès
  • Benjamin Grégoire
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7086)

Abstract

Emerging trends in proof styles and new applications of interactive proof assistants exploit the computational facilities of the provided proof language, reaping enormous benefits in proof size and convenience to the user. However, the resulting proof objects really put the proof assistant to the test in terms of computational time required to check them. We present a novel translation of the terms of the full Calculus of (Co)Inductive Constructions to OCaml programs. Building on this translation, we further present a new fully featured version of Coq that offloads much of the computation required during proof checking to a vanilla, state of the art and fine tuned compiler. This modular scheme yields substantial performance improvements over existing systems at a reduced implementation cost.

The work presented here builds on previous work described in [11], but we place particular emphasis in this paper on the fact that this scheme is in fact an instance of untyped normalization by evaluation [8, 14, 1,4].

Keywords

Normal Form Reduction Rule Proof Assistant Symbolic Calculus Inductive Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aehlig, K., Haftmann, F., Nipkow, T.: A Compiled Implementation of Normalization by Evaluation. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 39–54. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Barras, B., Grégoire, B.: On the Role of Type Decorations in the Calculus of Inductive Constructions. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 151–166. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed λ-calculus. In: LICS 1991, pp. 203–211 (1991)Google Scholar
  4. 4.
    Boespflug, M.: Conversion by evaluation. In: Proceedings of the Twelfth Internation Symposium on Practical Aspects of Declarative Languages, Madrid, Spain (2010)Google Scholar
  5. 5.
    Boutin, S.: Using Reflection to Build Efficient and Certified Decision Procedures. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Coquand, T., Paulin, C.: Inductively Defined Types. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  7. 7.
    Danvy, O.: Type-directed partial evaluation. In: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1996, pp. 242–257. ACM, St. Petersburg Beach (1996)Google Scholar
  8. 8.
    Filinski, A., Korsholm Rohde, H.: A Denotational Account of Untyped Normalization by Evaluation. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 167–181. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Gonthier, G.: The Four Colour Theorem: Engineering of a Formal Proof. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Gonthier, G., Mahboubi, A.: A Small Scale Reflection Extension for the Coq system. Research Report RR-6455, INRIA (2008)Google Scholar
  11. 11.
    Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Proceedings of the Seventh ACM SIGPLAN International Conference on Functional Programming, pp. 235–246. ACM (2002)Google Scholar
  12. 12.
    Grégoire, B., Mahboubi, A.: Proving Equalities in a Commutative Ring Done Right in Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995)Google Scholar
  14. 14.
    Lindley, S.: Normalisation by evaluation in the compilation of typed functional programming languages. Ph.D. thesis, University of Edinburgh (2005)Google Scholar
  15. 15.
    Théry, L.: Proof Pearl: Revisiting the Mini-Rubik in Coq. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 310–319. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Verma, K.N., Goubault-Larrecq, J., Prasad, S., Arun-Kumar, S.: Reflecting Bdds in Coq. In: He, J., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 162–181. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Werner, B.: Une Théorie des Constructions Inductives. Ph.D. thesis, Université Paris-Diderot - Paris VII (May 1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mathieu Boespflug
    • 1
  • Maxime Dénès
    • 2
  • Benjamin Grégoire
    • 2
  1. 1.McGill UniversityCanada
  2. 2.INRIA Sophia Antipolis - MéditerranéeFrance

Personalised recommendations