Passive Adjustment Techniques

Chapter

Abstract

In the course of the book, methods for optical coupling have been described that realize an active adjustment of the fiber by micromechanical actuator elements. In the present chapter, however, several methods are described that allow a passive fiber–chip connection. These methods include the flip chip (FC) technology and the LIGA technique (lithography, electroplating, molding technique). FC technique has also the great advantage of allowing a batch processing of the optical and electrical connection structure for a mass production of future optoelectronic communication engineering applications.

Keywords

Solder Joint Solder Bump Flip Chip Liquid Solder Bump Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Beyer, W., Eigler, H., Eigler, B.: Moderne Produktionsprozesse der Elektrotechnik, Elektronik und Mikrosystemtechnik. Expert-Verlag, Renningen (1996)Google Scholar
  2. Biletzke, M.: Einführung eines Prozesses zur Besichtung von 3-dimensional vorstrukturierten Substraten zur Herstellung von Metallisierungen und Bondpads (2000)Google Scholar
  3. Commission, E., Document, C.: Directive 2002/91/EC of the European Parliament and of the council of 16 December 2002 on the energy performance of buildings. Off. J. Eur. Union 65–71 (2002)Google Scholar
  4. Dantartas, M.F., Blonder, Y.H. Wong, Y.C.C.: A self-aligned optical subassembly for multi mode devices. IEEE CPMT, part B. 18, 552–557 (1997)Google Scholar
  5. Goodwin, M.J., Meseley, A.J., Kearly, M.Q., Morris, R.C., Kirkby, C.J.G., Thomson, J., Goodfellow, R.C., Bennion, I.: Optoelectronic component arrays for optical interconnection of circuits and subsystems. J. Light. Technol. 9, 1639–1645 (1991)CrossRefGoogle Scholar
  6. Hauffe, R., Siebel, U., Petermann, K., Moosburger, R., Kropp, J.-R., Arndt, F.: Methods for passive fiber chip coupling of integrated optical devices. IEEE Trans. Adv. Packag. 24, 450–455 (2001)Google Scholar
  7. Hügli, K.: Semiconductor Industry Sourcebook. Semiconductor Industry Sourcebook. Balzers Process Systems, Liechtenstein (1998)Google Scholar
  8. Katsura, K., Hayashi, T., Ohira, F., Hata, S., Iwashita, K.: A novel flip-chip interconnection technique using solder bumps for high-speed photoreceivers. J. Light. Technol. 8, 1323–1327 (1991)CrossRefGoogle Scholar
  9. Keil, N, et al.: Jahresbericht Heinricht-Hertz-Institut., Berlin (2000)Google Scholar
  10. Kuhmann, J.F., Pech, D.: In situ observation of the self-alignment during FC-bonding under vacuum with and without H2. IEEE Photonics Technol. Lett. 8, 1665–1667 (1996)CrossRefGoogle Scholar
  11. Kuhmann, J.F., Harde, P., Pech, D., Poittroff, W., Preuß, A., Adolphi, B., Wirth, T., Oesterle, W.: Fluxless Flip-Chip Bonding for the Photonic Assembly: Comparison between Evaporated SnPb(60/40) an AuSn(80/20) Solder. Micro System Technologies, Potsdam (1996)Google Scholar
  12. Lau, J.H.: Flip Chip Technologies. McGraw-Hill, New York (1995)Google Scholar
  13. Makiuchi, M., Norimatsu, M., Sakurai, T., Kondo, K., Yano, M.: Flip-chip planar Ga InAs/InP p-i-n photodiode array for parallel optical transmission. IEEE Photonics Technol. Lett. 5, 518–520 (1993)CrossRefGoogle Scholar
  14. Maly, K.: Untersuchungen zur Oxidationskinetik von flüssigen SnPb(60/40)-Lot in Abhängigkeit des O2-Partialdruckes (1997)Google Scholar
  15. Menz, M.: Mikrosystemtechnik für Ingenieure. VCH Verlagsgesellschaft mbH, Weinheim (1997)Google Scholar
  16. Nieweglowski, K.: Beiträge zur Aufbau- und Verbindungstechnik für optische Kurzstreckenverbindungen. Verlag Dr. Markus A. Detert, Templin (2011)Google Scholar
  17. Nishikawa, T., Ijuin, M., Satoh, R., et al.: Fluxless soldering process technology. In: 44th Electronic Components and Technology Conference, pp. 286–292, Washington, DC (1994)Google Scholar
  18. Reichel, H.: Direktmontage: Handbuch für die Verarbeitung ungehäuster ICs. Springer, Berlin (1998)CrossRefGoogle Scholar
  19. Rudolph, D.: Umbau eines Fineplacers zum Flip-Chip-Bondplatz zum Test von flussmittelfreien Lot- und Klebebondungen (1999)Google Scholar
  20. Saile, V.: Introduction: LIGA and its Applications. LIGA and its Applications, pp. 1–10 (2009)Google Scholar
  21. Schade, K.: Mikroelektrotechniktechnologie. Verlag Technik GmbH, Berlin (1991)Google Scholar
  22. Scheel, W.: Baugruppentechnologie der Elektronik: Montage. Verlag Technik, Eugen G. Leutze Verlag Saulgau, Berlin (1999)Google Scholar
  23. Steckenborn, A., Winkler, T., Jantke, G., Arndt, F., Schlaak, H.F.: High precision wafer orientation for micromachining. Microsyst. Technol. 91, 467–471 (1991)Google Scholar
  24. Sutherland, J. et al.: Optical coupling and alignment tolerances in optoelectronic array interface assemblies. In: 45th Electronic Components and Technology Conference, pp. 577–583, Las Vegas, NV (1993)Google Scholar
  25. Vannahme, C., Klinkhammer, S., Kolew, A., Jakobs, P.J., Guttmann, M., Dehm, S., Lemmer, U., Mappes, T.: Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate. Microelectron. Eng. 87, 693–695 (2010)CrossRefGoogle Scholar
  26. Wale, M.J., Edge, C.: Self-aligned flip-chip assembly of photonic devices with electrical and optical connections. IEEE Trans. Comp. Hyb. Manufac. Techn. 13, 780–7886 (1990)CrossRefGoogle Scholar
  27. Widmann, D., Mader, H., Friedrich, H.: Technologie hochintergrierter Schaltungen. Springer Verlag, Berlin, Heidelberg (1996)Google Scholar
  28. Zhang, C., Yang, C., Ding, D.: Deep reactive ion etching of PMMA. Appl. Surf. Sci. 227, 139–143 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Photonic Communications LabHarz University of Applied SciencesWernigerodeGermany

Personalised recommendations