Active Adjustment Techniques

Chapter

Abstract

In this chapter, basic components of active adjustment tools will be introduced. Here, the advantages, disadvantages, and applications of mechanical carriage systems are described for micropositioning and afterward deeply analyzed. Furthermore, an overview of existing possibilities of fiber-chip fixation in regard to the long-term stable welding process is shown. At the end of the chapter an example of the application of microwelds is illustrated and described in detail for the use in modules for optical communications systems. A coupling machine in combination with laser welding performs the fixing of the fiber-chip connection. Hereby, an adjusting welding technique, which is called “strain-reducing” welding, is introduced.

Keywords

Laser Head Fillet Weld Micrometer Screw Tapered Fiber Rochelle Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anthamatten, O., et al.: Laser welding for fiber pigtailing with long-term stability and submicron accuracy. Opt. Eng. 34, 2675–2682 (1995)CrossRefGoogle Scholar
  2. Becker, M., Günther, R., Staske, R., Olschewsky, R., Gruhl, H., Richter, H.: Laser micro welding and micro melting for connection of optoelectronic micro-components in laser in Engineering. Springer, Berlin (2001)Google Scholar
  3. Eckhardt, T.: Entwicklung eines DIL-lasermoduls, (1999)Google Scholar
  4. Fischer, U.H.P., Zech, S., Peters, K.: Transmitter modules with reusable fiber-chip coupling method for optical communications systems, http://www.eetimes.com/design/communications-design/4017993/A-Reusable-Fiber-Chip-Coupling-Method-for-Optical-Communication-Transmitter-Modules (2001)
  5. Fischer, U.H.P., Krips, O., Müller, E., Jacob, A.: Laser microwelding for fiber-chip coupling modules with tapered standard monomode fiber ends for optical communication systems. Opt. Eng. 41, 3221–3229 (2002)CrossRefGoogle Scholar
  6. Kato, D.: Light coupling from a stripe-geometry GaAs diode laser into an optical fiber with spherical end. J. Appl. Phys. 44, 2756–2758 (1973)CrossRefGoogle Scholar
  7. Krips, O.: Konstruktion einer Justiereinrichtung zur Ausrichtung von Lichtwellenleitern in einem Gerät zur Chip-Faser-Kopplung (2000)Google Scholar
  8. Kulina, R., Ringelhan, H., Weber, H.: Materialbearbeitung durch Laserstrahl. Deutscher Verlag für Schweißtechnik DVS-verlag, Düsseldorf (1993)Google Scholar
  9. Kuwahara, H., Sasaki, M., Tokoyo, N.: Efficient coupling from semiconductor lasers into single-mode fibers with tapered hemispherical end. Appl. Opt. 19, 2578–2583 (1980)CrossRefGoogle Scholar
  10. Müller, E.: Readjusting Two-Point Laser Welding for Automated Fiber-Chip Coupling (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Photonic Communications LabHarz University of Applied SciencesWernigerodeGermany

Personalised recommendations