Advertisement

Challenges Storing and Representing Biomedical Data

  • Joel P. Arrais
  • Pedro Lopes
  • José Luís Oliveira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7058)

Abstract

The scientific achievements coming from molecular biology depend greatly on the capability of computational applications to manage and explore laboratorial results. One component that is commonly underrated is the need for proper user interfaces that allow researchers to visually explore the results and extract biological evidences.

In this paper, we review the main challenges of dealing with complex biomedical datasets, namely regarding data storing, communicating, representing and visualizing biomedical experimental data. We emphasize the need for proper human computer interaction paradigms and underlying data management architectures in order to achieve a correct interpretation of the experimental results.

Keywords

Biomedical Data Data Integration Data Mining Data Representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stein, L.: Creating a bioinformatics nation. Nature 417(6885), 119–120 (2002)CrossRefGoogle Scholar
  2. 2.
    Goble, C., Stevens, R.: State of the nation in data integration for bioinformatics. J. Biomed. Inform. 41(5), 687–693 (2008)CrossRefGoogle Scholar
  3. 3.
    Al-Shahrour, F., et al.: From genes to functional classes in the study of biological systems. BMC Bioinformatics 8, 114 (2007)CrossRefGoogle Scholar
  4. 4.
    Fang, Z., et al.: Knowledge guided analysis of microarray data. J. Biomed. Inform. 39(4), 401–411 (2006)CrossRefGoogle Scholar
  5. 5.
    Trifiro, G., et al.: EU-ADR Healthcare Database Network vs. Spontaneous Reporting System Database: Preliminary Comparison of Signal Detection. Studies in Health Technology and Informatics 166, 25–30 (2011)Google Scholar
  6. 6.
    Webb, A.J., Thorisson, G.A., Brookes, A.J.: An informatics project and online “Knowledge Centre” supporting modern genotype-to-phenotype research. Human Mutation 32(5), 543–550 (2011)CrossRefGoogle Scholar
  7. 7.
    Ring, H.Z., Kwok, P.-Y., Cotton, R.G.: Human Variome Project: an international collaboration to catalogue human genetic variation. Pharmacogenomics 7(7), 969–972 (2006)CrossRefGoogle Scholar
  8. 8.
    Goble, C., Stevens, R.: State of the nation in data integration for bioinformatics. Journal of Biomedical Informatics 41(5), 687–693 (2008)CrossRefGoogle Scholar
  9. 9.
    Smedley, D., et al.: BioMart - biological queries made easy. BMC Genomics 10(1), 22 (2009)CrossRefGoogle Scholar
  10. 10.
    Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. The Addison-Wesley Signature Series. Addison-Wesley (2004)Google Scholar
  11. 11.
    Polyzotis, N., et al.: Meshing Streaming Updates with Persistent Data in an Active Data Warehouse. IEEE Transactions on Knowledge and Data Engineering 20(7), 976–991 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhu, Y., An, L., Liu, S.: Data Updating and Query in Real-Time Data Warehouse System. In: 2008 International Conference on Computer Science and Software Engineering (2008)Google Scholar
  13. 13.
    Arrais, J., Pereira, J., Oliveira, J.L.: GeNS: A biological data integration platform. In: ICBB 2009, International Conference on Bioinformatics and Biomedicine. WASET, World Academy of Science, Engineering and Technology, Venice (2009)Google Scholar
  14. 14.
    Belleau, F., et al.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41(5), 706–716 (2008)CrossRefGoogle Scholar
  15. 15.
    Haas, L.M., et al.: DiscoveryLink: A system for integrated access to life sciences data sources. IBM Systems Journal 40(2), 489–511 (2001)CrossRefGoogle Scholar
  16. 16.
    Matos, S., et al.: Concept-based query expansion for retrieving gene related publications from MEDLINE. BMC Bioinformatics 11(1), 212 (2010)CrossRefGoogle Scholar
  17. 17.
    Lopes, P., Dalgleish, R., Oliveira, J.L.: WAVe: Web Analysis of the Variome. Human Mutation 32 (2011)Google Scholar
  18. 18.
    Lopes, P., Dalgleish, R., Oliveira, J.L.: WAVe: web analysis of the variome. Hum. Mutat. 32(7), 729–734 (2011)CrossRefGoogle Scholar
  19. 19.
    Arrais, J., et al.: GeneBrowser: an approach for integration and functional classification of genomic data (2007)Google Scholar
  20. 20.
    Garde, S., et al.: Towards semantic interoperability for electronic health records. Methods Inf. Med. 46(3), 332–343 (2007)Google Scholar
  21. 21.
    Blazona, B., Koncar, M.: HL7 and DICOM based integration of radiology departments with healthcare enterprise information systems. Int. J. Med. Inform. 76(suppl. 3), S425–S432 (2007)CrossRefGoogle Scholar
  22. 22.
    Ludascher, B., et al.: Taverna: Scientific Workflow Management and the Kepler System. Research Articles, Concurrency and Computation: Practice & Experience 18(10), 1039–1065 (2006)CrossRefGoogle Scholar
  23. 23.
    W3C, W.W.W.C., Web Services. World Wide Web Consortium (2002)Google Scholar
  24. 24.
    Wang, Y.-H., Liao, J.C.: Why or Why Not Service Oriented Architecture. In: International Conference on Services Science, Management and Engineering 2009 (2009)Google Scholar
  25. 25.
    Rosenberg, F., et al.: Composing RESTful Services and Collaborative Workflows: A Lightweight Approach. IEEE Internet Computing 12(5), 24–31 (2008)CrossRefGoogle Scholar
  26. 26.
    Milanovic, N., Malek, M.: Current solutions for Web service composition. IEEE Internet Computing 8(6), 51–59 (2004)CrossRefGoogle Scholar
  27. 27.
    Slater, T., Bouton, C., Huang, E.S.: Beyond data integration. Drug Discovery Today 13(13/14), 584–589 (2008)CrossRefGoogle Scholar
  28. 28.
    Kozhenkov, S., et al.: BiologicalNetworks 2.0 - an integrative view of genome biology data. BMC Bioinformatics 11(1), 610 (2010)CrossRefGoogle Scholar
  29. 29.
    Cannata, N., et al.: A Semantic Web for bioinformatics: goals, tools, systems, applications. BMC Bioinformatics 9(suppl. 4), S1 (2008)CrossRefGoogle Scholar
  30. 30.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 284, 34–43 (2001)CrossRefGoogle Scholar
  31. 31.
    Miller, E.J.: An Introduction to the Resource Description Framework. Journal of Library Administration 34(3), 245–255 (2001)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications. Knowledge Engineering Review 11(2), 93–155 (1996)CrossRefGoogle Scholar
  33. 33.
    Stevens, R., Goble, C.A., Bechhofer, S.: Ontology-based knowledge representation for bioinformatics. Brief Bioinform. 1(4), 398–414 (2000)CrossRefGoogle Scholar
  34. 34.
    Hepp, M.: Semantic Web and semantic Web services: father and son or indivisible twins? IEEE Internet Computing 10(2), 85–88 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joel P. Arrais
    • 1
  • Pedro Lopes
    • 1
  • José Luís Oliveira
    • 1
  1. 1.DETI/IEETAUniversity of AveiroAveiroPortugal

Personalised recommendations