Discourse Segmentation for Sentence Compression

  • Alejandro Molina
  • Juan-Manuel Torres-Moreno
  • Eric SanJuan
  • Iria da Cunha
  • Gerardo Sierra
  • Patricia Velázquez-Morales
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)


Earlier studies have raised the possibility of summarizing at the level of the sentence. This simplification should help in adapting textual content in a limited space. Therefore, sentence compression is an important resource for automatic summarization systems. However, there are few studies that consider sentence-level discourse segmentation for compression task; to our knowledge, none in Spanish. In this paper, we study the relationship between discourse segmentation and compression for sentences in Spanish. We use a discourse segmenter and observe to what extent the passages deleted by annotators fit in discourse structures detected by the system. The main idea is to verify whether the automatic discourse segmentation can serve as a basis in the identification of segments to be eliminated in the sentence compression task. We show that discourse segmentation could be a first solid step towards a sentence compression system.


Natural Language Processing Relative Clause Latent Semantic Analysis Statistical Machine Translation Computational Linguistics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witbrock, M.J., Mittal, V.O.: Ultra-Summarization: A Statistical Approach to Generating Highly Condensed Non-Extractive Summaries. In: Proceedings of the 22nd International Conference on Research and Development in Information Retrieval, pp. 315–316. University of California, Berkeley (1999)Google Scholar
  2. 2.
    Jing, H.: Sentence reduction for automatic text summarization. In: Proceedings of the Sixth Conference on Applied Natural Language Processing, pp. 310–315. Association for Computational Linguistics (2000)Google Scholar
  3. 3.
    Knight, K., Marcu, D.: Statistics-based summarization-step one: Sentence compression. In: Proceedings of the National Conference on Artificial Intelligence, pp. 703–710. AAAI Press, MIT Press, Menlo Park, Cambridge (2000)Google Scholar
  4. 4.
    Lin, C.: Improving summarization performance by sentence compression-a pilot study. In: Proceedings of the 6th International Workshop on Information Retrieval with Asian Languages, pp. 1–8 (2003)Google Scholar
  5. 5.
    Grefenstette, G.: Producing intelligent telegraphic text reduction to provide an audio scanning service for the blind. In: Working notes of the AAAI Spring Symposium on Intelligent Text summarization, pp. 111–118 (1998)Google Scholar
  6. 6.
    Jing, H., McKeown, K.: The decomposition of human-written summary sentences. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 129–136. ACM (1999)Google Scholar
  7. 7.
    Knight, K., Marcu, D.: Summarization beyond sentence extraction: A probabilistic approach to sentence compression. Artificial Intelligence 139, 91–107 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Galley, M., McKeown, K.: Lexicalized markov grammars for sentence compression. In: Proceedings of the NAACL/HLT, pp. 180–187 (2007)Google Scholar
  9. 9.
    Clarke, J., Lapata, M.: Modelling compression with discourse constraints. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 1–11 (2007)Google Scholar
  10. 10.
    Clarke, J., Lapata, M.: Global inference for sentence compression: An integer linear programming approach. Journal of Artificial Intelligence Research 31, 399–429 (2008)zbMATHGoogle Scholar
  11. 11.
    Pitler, E.: Methods for sentence compression. Technical Report MS-CIS-10-20, University of Pennsylvania (2010)Google Scholar
  12. 12.
    Steinberger, J., Jezek, K.: Sentence Compression for the LSA-based Summarizer. In: Proceedings of the 7th International Conference on Information Systems Implementation and Modelling, Citeseer, pp. 141–148 (2006)Google Scholar
  13. 13.
    Dumais, S.: Latent semantic analysis. Annual Review of Information Science and Technology 38, 188–230 (2004)CrossRefGoogle Scholar
  14. 14.
    Sporleder, C., Lapata, M.: Discourse chunking and its application to sentence compression. In: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 257–264.Association for Computational Linguistics (2005)Google Scholar
  15. 15.
    Soricut, R., Marcu, D.: Sentence level discourse parsing using syntactic and lexical information. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, NAACL 2003, vol. 1, pp. 149–156. Association for Computational Linguistics, Stroudsburg (2003)Google Scholar
  16. 16.
    Waszak, T., Torres-Moreno, J.M.: Compression entropique de phrases contrôlée par un perceptron. In: Journées Internationales d’Analyse Statistique des Données Textuelles (JADT 2008), Lyon, pp. 1163–1173 (2008)Google Scholar
  17. 17.
    Fernández, S., Torres-Moreno, J.M.: Une approche exploratoire de compression automatique de phrases basée sur des critères thermodynamiques. In: Actes de la Conférence sur le Traitement Automatique du Langage Naturel (2009)Google Scholar
  18. 18.
    Molina, A., da Cunha, I., Torres-Moreno, J., Velazquez-Morales, P.: La compresión de frases: un recurso para la optimización de resumen automático de documentos. Linguamática 2, 13–27 (2011)Google Scholar
  19. 19.
    da Cunha, I., Molina, A., Torres-Moreno, J., Velazquez-Morales, P.: Optimización de resumen automático mediante compresión de frases. In: Proceedings of the XXVIII Congreso Internacional de la Asociación Española de Lingüística Aplicada, AESLA 2010 (2010)Google Scholar
  20. 20.
    Daelemans, W., Höthker, A., Sang, E.: Automatic sentence simplification for subtitling in dutch and english. In: Proceedings of the 4th International Conference on Language Resources and Evaluation, Citeseer, pp. 1045–1048 (2004)Google Scholar
  21. 21.
    Aluísio, S., Specia, L., Pardo, T., Maziero, E., Fortes, R.: Towards brazilian portuguese automatic text simplification systems. In: Proceeding of the Eighth ACM Symposium on Document Engineering, pp. 240–248. ACM (2008)Google Scholar
  22. 22.
    Tofiloski, M., Brooke, J., Taboada, M.: A syntactic and lexical-based discourse segmenter. In: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, ACLShort 2009, pp. 77–80. Association for Computational Linguistics, Stroudsburg (2009)Google Scholar
  23. 23.
    Mann, W.C., Thompson, S.A.: Rhetorical structure theory: Toward a functional theory of text organization. Text 8, 243–281 (1988)CrossRefGoogle Scholar
  24. 24.
    Marcu, D.: The rhetorical parsing of unrestricted texts: a surface-based approach. Comput. Linguist. 26, 395–448 (2000)CrossRefGoogle Scholar
  25. 25.
    da Cunha, I.: Hacia un modelo lingüístico de resumen automático de artículos médicos en español. Tesis; 23. Institut Universitari de Lingüística Aplicada, Barcelona, Spain (2008)Google Scholar
  26. 26.
    Mazeiro, E., Pardo, T., Nunes, M.: Identificação automática de segmentos discursivos: o uso do parser palavras. Série de Relatórios do Núcleo Interinstitucional de Lingüística Computacional. Universidade de Sao Paulo, São Carlos (2007)Google Scholar
  27. 27.
    da Cunha, I., SanJuan, E., Torres-Moreno, J.M., Lloberes, M., Castellón, I.: Discourse Segmentation for Spanish Based on Shallow Parsing. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part I. LNCS, vol. 6437, pp. 13–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Afantenos, S.D., Denis, P., Muller, P., Danlos, L.: Learning recursive segments for discourse parsing. CoRR abs/1003.5372 (2010)Google Scholar
  29. 29.
    Atserias, J., Casas, B., Comelles, E., González, M., Padró, L., Padró, M.: FreeLing 1.3: Syntactic and semantic services in an open-source NLP library. In: Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006), pp. 48–55 (2006)Google Scholar
  30. 30.
    Portolés, J.: Marcadores del discurso. Letras (Editorial Ariel). Ariel (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alejandro Molina
    • 1
  • Juan-Manuel Torres-Moreno
    • 1
  • Eric SanJuan
    • 1
  • Iria da Cunha
    • 2
  • Gerardo Sierra
    • 3
  • Patricia Velázquez-Morales
    • 4
  1. 1.LIA-Université d’AvignonFrance
  2. 2.IULA-Universitat Pompeu FabraSpain
  3. 3.GIL-Instituto de Ingeniería UNAMMexico
  4. 4.VM LabsUK

Personalised recommendations