Improving the Performance of Heuristic Algorithms Based on Causal Inference

  • Marcela Quiroz Castellanos
  • Laura Cruz Reyes
  • José Torres-Jiménez
  • Claudia Gómez Santillán
  • Mario César López Locés
  • Jesús Eduardo Carrillo Ibarra
  • Guadalupe Castilla Valdez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)


Causal inference can be used to construct models that explain the performance of heuristic algorithms for NP-hard problems. In this paper, we show the application of causal inference to the algorithmic optimization process through an experimental analysis to assess the impact of the parameters that control the behavior of a heuristic algorithm. As a case study we present an analysis of the main parameters of one state of the art procedure for the Bin Packing Problem (BPP). The studies confirm the importance of the application of causal reasoning as a guide for improving the performance of the algorithms.


weight annealing bin packing problem causal inference parameter adjustment tuning performance evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press (2001)Google Scholar
  2. 2.
    Lemeire, J.: Learning Causal Models of Multivariate Systems and the Value of it for the Performance Modeling of Computer Programs. PhD thesis. Vrije Universiteit Brussel (2007)Google Scholar
  3. 3.
    Pérez, V.: Modelado Causal del Desempeño de Algoritmos Metaheurísticos en Problemas de Distribución de Objetos. Tesis de maestría, Instituto Tecnológico de Cd. Madero, Tamaulipas, México (2007)Google Scholar
  4. 4.
    Pérez, J., Cruz, L., Pazos, R., Landero, V., Reyes, G., Zavala, C., Fraire, H., Pérez, V.: A Causal Approach for Explaining Why a Heuristic Algorithm Outperforms Another in Solving an Instance Set of the Bin Packing Problem. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 591–598. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Quiroz, M.: Caracterización de Factores de Desempeño de Algoritmos de Solución de BPP. Tesis de maestría, Instituto Tecnológico de Cd. Madero, Tamaulipas, México (2009)Google Scholar
  6. 6.
    Cruz, L.: Caracterización de Algoritmos Heurísticos Aplicados al Diseño de Bases de Datos Distribuidas. PhD Tesis, Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca, Morelos, México (2004)Google Scholar
  7. 7.
    Álvarez, V.: Modelo para representar la Complejidad del problema y el desempeño de algoritmos. Tesis de maestría, Instituto Tecnológico de Cd. Madero, Tamaulipas, México (2006)Google Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979); A classic introduction to the fieldGoogle Scholar
  9. 9.
    Basse, S.: Computer Algorithms, Introduction to Design and Analysis. Editorial Addison-Wesley Publishing Company (1998)Google Scholar
  10. 10.
    Cruz Reyes, L., Nieto-Yáñez, D.M., Rangel-Valdez, N., Herrera Ortiz, J.A., González, B.J., Castilla Valdez, G., Delgado-Orta, J.F.: DiPro: An Algorithm for the Packing in Product Transportation Problems with Multiple Loading and Routing Variants. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 1078–1088. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Loh, K., Golden, B., Wasil, E.: Solving the one-dimensional bin packing problem with a weight annealing heuristic. Computers & Operations Research 35, 2283–2291 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    The TETRAD Project: Causal Models and Statistical Data. TETRAD Homepage:
  13. 13.
    Eiben, A., Smit, S.: Parameter Tuning for Configuring and Analyzing Evolutionary Algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)CrossRefGoogle Scholar
  14. 14.
    Nadkarni, S., Shenoy, P.: A bayesian network approach to making inferences in causal maps. European Journal of Operational Research 128, 479–498 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Vila, M., Sánchez, D., Escobar, L.: Relaciones Causales en Reglas de Asociación. In: XII Congreso Español sobre Tecnologías y Lógica Fuzzy, ESTYLF’2004 (2004)Google Scholar
  16. 16.
    Pearl, J.: Causal inference in statistics: An overview. Statistics Surveys 3, 96–146 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Carnegie Mellon University: Causal and Statistical Reasoning. Open Learning Initiative (2011),
  18. 18.
    Kalisch, M., Bühlmann, P.: Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm. Journal of Machine Learning Research 8, 613–636 (2007)zbMATHGoogle Scholar
  19. 19.
    Johnson, D.S.: Fast algorithms for bin packing. Journal of Computer and System Sciences 8(3), 272–314 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Beasley, J.E.: OR-library: Distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990), CrossRefGoogle Scholar
  21. 21.
    Klein, R., Scholl, A.: Bin Packing benchmark data sets,
  22. 22.
    Euro Especial Interest Group on Cutting and Packing. One Dimensional Cutting and Packing Data Sets,
  23. 23.
    Cutting and Packing at Dresden University. Benchmark data sets.,
  24. 24.
    Fleszar, K., Charalambous, C.: Average-weight-controlled bin-oriented heuristics for the one-dimensional bin-packing problem. European Journal of Operational Research 210(2), 176–184 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marcela Quiroz Castellanos
    • 1
  • Laura Cruz Reyes
    • 1
  • José Torres-Jiménez
    • 2
  • Claudia Gómez Santillán
    • 1
  • Mario César López Locés
    • 1
  • Jesús Eduardo Carrillo Ibarra
    • 1
  • Guadalupe Castilla Valdez
    • 1
  1. 1.Instituto Tecnológico de Ciudad MaderoMéxico

Personalised recommendations