Solving Recursion-Free Horn Clauses over LI+UIF

  • Ashutosh Gupta
  • Corneliu Popeea
  • Andrey Rybalchenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7078)

Abstract

Verification of programs with procedures, multi-threaded programs, and higher-order functional programs can be effectively automated using abstraction and refinement schemes that rely on spurious counterexamples for abstraction discovery. The analysis of counterexamples can be automated by a series of interpolation queries, or, alternatively, as a constraint solving query expressed by a set of recursion free Horn clauses. (A set of interpolation queries can be formulated as a single constraint over Horn clauses with linear dependency structure between the unknown relations.) In this paper we present an algorithm for solving recursion free Horn clauses over a combined theory of linear real/rational arithmetic and uninterpreted functions. Our algorithm performs resolution to deal with the clausal structure and relies on partial solutions to deal with (non-local) instances of functionality axioms.

Keywords

Inference Rule Partial Solution Predicate Symbol Combination Rule Horn Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model checking via large-block encoding. In: FMCAD (2009)Google Scholar
  2. 2.
    Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 384–399. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 299–303. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Cimatti, A., Griggio, A., Sebastiani, R.: Interpolant Generation for UTVPI. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 167–182. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants in satisfiability modulo theories. ACM Trans. Comput. Logic 12 (November 2010)Google Scholar
  7. 7.
    de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Goel, A., Krstić, S., Tinelli, C.: Ground Interpolation for Combined Theories. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 183–198. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for verifying multi-threaded programs. In: POPL (2011)Google Scholar
  10. 10.
    Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free Horn clauses over LI+UIF (2011), http://pub.ist.ac.at/~agupta/papers/HornLIUIF.pdf
  11. 11.
    Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: POPL (2010)Google Scholar
  12. 12.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL (2004)Google Scholar
  13. 13.
    Jain, H., Clarke, E.M., Grumberg, O.: Efficient Craig interpolation for linear Diophantine (dis)equations and linear modular equations. In: Formal Methods in System Design, pp. 6–39 (2009)Google Scholar
  14. 14.
    Jhala, R., Majumdar, R.: Counterexample refinement for functional programs (2009), http://www.cs.ucla.edu/~rupak/Papers/CEGARFunctional.ps
  15. 15.
    Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Kroening, D., Leroux, J., Rümmer, P.: Interpolating Quantifier-Free Presburger Arithmetic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 489–503. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Terauchi, T.: Dependent types from counterexamples. In: POPL (2010)Google Scholar
  21. 21.
    Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: PPDP (2009)Google Scholar
  22. 22.
    Yorsh, G., Musuvathi, M.: A Combination Method for Generating Interpolants. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ashutosh Gupta
    • 1
    • 2
  • Corneliu Popeea
    • 2
  • Andrey Rybalchenko
    • 2
  1. 1.ISTAustria
  2. 2.Technische Universität MünchenGermany

Personalised recommendations