Elliptic Curve Cryptography on the WISP UHF RFID Tag

  • Christian Pendl
  • Markus Pelnar
  • Michael Hutter
Part of the Lecture Notes in Computer Science book series (volume 7055)

Abstract

The Wireless Identification and Sensing Platform (WISP) can be used to demonstrate and evaluate new RFID applications. In this paper, we present practical results of an implementation of elliptic curve cryptography (ECC) running on the WISP. Our implementation is based on the smallest recommended NIST elliptic curve over prime fields. We meet the low-resource requirements of the platform by various code-size and memory optimizations. Furthermore, we provide a cryptographic framework that allows the realization of different ECC-based protocols on the WISP. We evaluated our implementation results by considering platforms with and without a hardware multiplier. Our best implementation performs a scalar multiplication using the Montgomery powering ladder within 1.6 seconds at a frequency of 6.7 MHz.

Keywords

Public-Key Cryptography Elliptic Curves WISP UHF Tag RFID Embedded Systems Privacy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brent, R.P.: Note on Marsaglia’s Xorshift Random Number Generators. Journal of Statistical Software 11(4), 1–5 (2004)MathSciNetGoogle Scholar
  2. 2.
    Chae, M.-J., Yeager, D.J., Smith, J.R., Fu, K.: Maximalist cryptography and computation on the WISP UHF RFID tag. In: Proceedings of the Conference on RFID Security (2007)Google Scholar
  3. 3.
    Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates (1998)Google Scholar
  4. 4.
    Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 29, 526–538 (1990)CrossRefGoogle Scholar
  5. 5.
    Goundar, R., Joye, M., Miyaji, A.: Co-Z Addition Formulae and Binary Ladders on Elliptic Curves. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 65–79. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Gouvêa, C., López, J.: Software Implementation of Pairing-Based Cryptography on Sensor Networks Using the MSP430 Microcontroller. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 248–262. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Guajardo, J., Blümel, R., Krieger, U., Paar, C.: Efficient Implementation of Elliptic Curve Cryptosystems on the TI MSP 430x33x Family of Microcontrollers. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 365–382. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs, pp. 119–132 (2004)Google Scholar
  9. 9.
    Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer-Verlag New York, Inc., Secaucus (2003)Google Scholar
  10. 10.
    Hutter, M., Joye, M., Sierra, Y.: Memory-Constrained Implementations of Elliptic Curve Cryptography in Co-Z Coordinate Representation. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 170–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Impinj: Speedway Revolution - Superior Performance Made Easy (2010)Google Scholar
  12. 12.
    T. Instruments. MSP430F21x2 Mixed Signal Microcontroller, Rev. G (2009)Google Scholar
  13. 13.
    T. Instruments. MSP430x2xx Family User’s Guide, Rev. F (2010)Google Scholar
  14. 14.
    Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Lee, Y.K., Verbauwhede, I.: A Compact Architecture for Montgomery Elliptic Curve Scalar Multiplication Processor. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 115–127. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Liu, A., Ning, P.: TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor Networks. In: Proceedings of International Conference on Information Processing in Sensor Networks - IPSN 2008, St. Louis, Missouri, USA, April 22-24, pp. 245–256 (2008)Google Scholar
  18. 18.
    Mangard, S., Oswald, M.E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007)MATHGoogle Scholar
  19. 19.
    Marsaglia, G.: Xorshift RNGs. Journal of Statistical Software 8(14), 1–6 (2003)Google Scholar
  20. 20.
    Meloni, N.: Fast and Secure Elliptic Curve Scalar Multiplication Over Prime Fields Using Special Addition Chains. In: Cryptology ePrint Archive, Report 2006/216 (2006)Google Scholar
  21. 21.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)MATHGoogle Scholar
  22. 22.
    Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factorization. Mathematics of Computation 48(177), 243–264 (1987)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    National Institute of Standards and Technology (NIST). FIPS-186-3: Digital Signature Standard, DSS (2009), http://www.itl.nist.gov/fipspubs/
  24. 24.
    Sample, A., Yeager, D., Smith, J.: WISP: A Passively Powered UHF RFID Tag with Sensing and Computation. In: RFID Handbook: Applications, Technology, Security, and Privacy (March 2008)Google Scholar
  25. 25.
    Saxena, N., Voris, J.: Accelerometer Based Random Number Generation on RFID Tags. In: 1st Workshop on Wirelessly Powered Sensor Networks and Computational RFID, WISP Summit (2009)Google Scholar
  26. 26.
    Scott, M., Szczechowiak, P.: Optimizing Multiprecision Multiplication for Public Key Cryptography. In: Cryptology ePrint Archive, Report 2007/299 (2007), http://eprint.iacr.org/
  27. 27.
    Smith, J.R., Fishkin, K.P., Jiang, B., Mamishev, A., Philipose, M., Rea, A.D., Roy, S., Sundara-Rajan, K.: RFID-based techniques for human-activity detection. Commun. ACM 48, 39–44 (2005)CrossRefGoogle Scholar
  28. 28.
    Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC: Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Texas Instruments. MSP-FET430UIF (May 2010)Google Scholar
  30. 30.
    The global language of business. EPCTM Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz 960 MHz Version 1.2.0 (October 2008)Google Scholar
  31. 31.
    Vaudenay, S.: On Privacy Models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Yeager, D., Holleman, J., Prasad, R., Smith, J., Otis, B.: NeuralWISP: A Wirelessly Powered Neural Interface With 1-m Range. IEEE Transactions on Biomedical Circuits and Systems 3(6), 379–387 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Pendl
    • 1
  • Markus Pelnar
    • 1
  • Michael Hutter
    • 1
  1. 1.Institute for Applied Information Processing and Communications (IAIK)Graz University of TechnologyGrazAustria

Personalised recommendations