Combining Neighbourhoods in Fuzzy Job Shop Problems

  • Jorge Puente
  • Camino R. Vela
  • Inés González-Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7023)


In the sequel, we propose a new neighbourhood structure for local search for the fuzzy job shop scheduling problem, which is a variant of the well-known job shop problem, where uncertain durations are modelled as fuzzy numbers and the objective is to minimise the expected makespan of the resulting schedule. The new neighbourhood structure is based on changing the position of a task in a critical block. We provide feasibility conditions and a makespan estimate which allows to select only feasible and promising neighbours. The experimental results illustrate the success of our proposal in reducing expected makespan within a memetic algorithm. The experiments also show that combining the new structure with an existing neighbourhood from the literature considering both neighborhoods at the same time, provides the best results.


Local Search Fuzzy Number Neighbourhood Structure Memetic Algorithm Local Search Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Applegate, D., Cook, W.: A computational study of the job-shop scheduling problem. ORSA Journal of Computing 3, 149–156 (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brucker, P., Knust, S.: Complex Scheduling. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  3. 3.
    Dell’ Amico, M., Trubian, M.: Applying tabu search to the job-shop scheduling problem. Annals of Operational Research 41, 231–252 (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research 147, 231–252 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fortemps, P.: Jobshop scheduling with imprecise durations: a fuzzy approach. IEEE Transactions of Fuzzy Systems 7, 557–569 (1997)CrossRefGoogle Scholar
  6. 6.
    González Rodríguez, I., Vela, C.R., Puente, J.: Sensitivity Analysis for the Job Shop Problem with Uncertain Durations and Flexible Due Dates. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 538–547. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    González Rodríguez, I., Puente, J., Vela, C.R., Varela, R.: Semantics of schedules for the fuzzy job shop problem. IEEE Transactions on Systems, Man and Cybernetics, Part A 38(3), 655–666 (2008)CrossRefGoogle Scholar
  8. 8.
    González Rodríguez, I., Vela, C.R., Hernández-Arauzo, A., Puente, J.: Improved local search for job shop scheduling with uncertain durations. In: Proc. of ICAPS 2009, pp. 154–161. AAAI Press (2009)Google Scholar
  9. 9.
    González Rodríguez, I., Vela, C.R., Puente, J., Varela, R.: A new local search for the job shop problem with uncertain durations. In: Proc. of ICAPS 2008, pp. 124–131. AAAI Press (2008)Google Scholar
  10. 10.
    Grabowski, J., Wodecki, M.: A very fast tabu search algorithm for job shop problem. In: Metaheuristic Optimization via Memory and Evolution. Tabu Search and Scatter Search. Operations Research/Computer Science Interfaces Series, pp. 117–144. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Herroelen, W., Leus, R.: Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research 165, 289–306 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems 10, 445–450 (2002)CrossRefGoogle Scholar
  13. 13.
    Mattfeld, D.C.: Evolutionary Search and the Job Shop Investigations on Genetic Algorithms for Production Scheduling. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  14. 14.
    Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop scheduling problem. Management Science 42, 797–813 (1996)CrossRefzbMATHGoogle Scholar
  15. 15.
    Petrovic, S., Fayad, S., Petrovic, D.: Sensitivity analysis of a fuzzy multiobjective scheduling problem. International Journal of Production Research 46(12), 3327–3344 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Pinedo, M.L.: Scheduling. Theory, Algorithms, and Systems, 3rd edn. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  17. 17.
    Puente, J., Vela, C.R., González-Rodríguez, I.: Fast local search for fuzzy job shop scheduling. In: Proc. of ECAI 2010, pp. 739–744. IOS Press (2010)Google Scholar
  18. 18.
    Sakawa, M., Kubota, R.: Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms. European Journal of Operational Research 120, 393–407 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Taillard, E.D.: Parallel taboo search techniques for the job shop scheduling problem. ORSA Journal on Computing 6(2), 108–117 (1994)CrossRefzbMATHGoogle Scholar
  20. 20.
    Tavakkoli-Moghaddam, R., Safei, N., Kah, M.: Accessing feasible space in a generalized job shop scheduling problem with the fuzzy processing times: a fuzzy-neural approach. Journal of the Operational Research Society 59, 431–442 (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Van Laarhoven, P., Aarts, E., Lenstra, K.: Job shop scheduling by simulated annealing. Operations Research 40, 113–125 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jorge Puente
    • 1
  • Camino R. Vela
    • 1
  • Inés González-Rodríguez
    • 2
  1. 1.A.I. Centre and Department of Computer ScienceUniversity of OviedoSpain
  2. 2.Department of Mathematics, Statistics and ComputingUniversity of CantabriaSpain

Personalised recommendations