Advertisement

An Study on Ear Detection and Its Applications to Face Detection

  • Modesto Castrillón-Santana
  • Javier Lorenzo-Navarro
  • Daniel Hernández-Sosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7023)

Abstract

OpenCV includes different object detectors based on the Viola-Jones framework. Most of them are specialized to deal with the frontal face pattern and its inner elements: eyes, nose, and mouth. In this paper, we focus on the ear pattern detection, particularly when a head profile or almost profile view is present in the image. We aim at creating real-time ear detectors based on the general object detection framework provided with OpenCV. After training classifiers to detect left ears, right ears, and ears in general, the performance achieved is valid to be used to feed not only a head pose estimation system but also other applications such as those based on ear biometrics.

Keywords

face detection facial feature detection ear detection Viola-Jones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abaza, A., Hebert, C., Harrison, M.A.F.: Fast learning ear detection for real-time surveillance. In: Biometrics: Theory Applications and Systems, BTAS (2010)Google Scholar
  2. 2.
    Bradley, D.: Profile face detection (2003), http://www.davidbradley.info (last accesed July 15, 2011)
  3. 3.
    Castrillón, M., Déniz, O., Hernández, D., Lorenzo, J.: A comparison of face and facial feature detectors based on the viola jones general object detection framework. Machine Vision and Applications 22(3), 481–494 (2011)Google Scholar
  4. 4.
    Chang, K., Bowyer, K.W., Sarkar, S., Victor, B.: Comparison and combination of ear and face images in appearance-based biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1160–1165 (2003)CrossRefGoogle Scholar
  5. 5.
    Hewitt, R.: Seeing with OpenCV. a computer-vision library. Servo, 62–65 (January 2007)Google Scholar
  6. 6.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (October 2007)Google Scholar
  7. 7.
    Intel. Open Source Computer Vision Library, v2.3 (July 2011), http://opencv.willowgarage.com/wiki/ (last visited July 2011)
  8. 8.
    Islam, S.M.S., Bennamoun, M., Davies, R.: Fast and fully automatic ear detection using cascaded adaboost. In: WACV (2008)Google Scholar
  9. 9.
    Islam, S.M.S., Bennamoun, M., Owens, R., Davies, R.: Biometric approaches of 2D-3D ear and face: A survey. Advances in Computer And Information Sciences and Engineering, 509–514 (2008)Google Scholar
  10. 10.
    Jain, A., Flynn, P., Ross, A.A. (eds.): Handbook of Biometrics. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Jain, V., Learned-Miller, E.: FDDB: A benchmark for face detection in unconstrained settings. Technical report, University of Massachusetts, Amherst (2010)Google Scholar
  12. 12.
    Kruppa, H., Castrillón-Santana, M., Schiele, B.: Fast and robust face finding via local context. In: Joint IEEE Internacional Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VS-PETS), pp. 157–164 (October 2003)Google Scholar
  13. 13.
    Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 297–304. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lienhart, R., Liang, L., Kuranov, A.: A detector tree of boosted classifiers for real-time object detection and tracking. In: IEEE ICME 2003, pp. 277–280 (July 2003)Google Scholar
  15. 15.
    Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: IEEE ICIP 2002, vol. 1, pp. 900–903 (September 2002)Google Scholar
  16. 16.
    Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 607–626 (2009)CrossRefGoogle Scholar
  17. 17.
    Jonathon Phillips, P., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. TR 6264, NISTIR (January 1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00609311
  18. 18.
    Reimondo, A.: Haar cascades repository (2007), http://alereimondo.no-ip.org/OpenCV/34 (last visited April 2010)
  19. 19.
    Seo, N.: Tutorial: OpenCV haartraining (rapid object detection with a cascade of boosted classifiers based on haar-like features), http://note.sonots.com/SciSoftware/haartraining.html (last visited June 2010)
  20. 20.
    Vatahska, T., Bennewitz, M., Behnke, S.: Feature-based head pose estimation from images. In: Proceedings of IEEE-RAS 7th International Conference on Humanoid Robots, Humanoids (2007)Google Scholar
  21. 21.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 151–173 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Modesto Castrillón-Santana
    • 1
  • Javier Lorenzo-Navarro
    • 1
  • Daniel Hernández-Sosa
    • 1
  1. 1.SIANI Campus de TafiraUniversidad de Las Palmas de Gran CanariaSpain

Personalised recommendations