Advertisement

A Summary on the Study of the Medium-Term Forecasting of the Extra-Virgen Olive Oil Price

  • Antonio Jesús Rivera
  • María Dolores Pérez-Godoy
  • María José del Jesus
  • Pedro Pérez-Recuerda
  • María Pilar Frías
  • Manuel Parras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7023)

Abstract

In this paper we present a summary of the application of CO2RBFN, a evolutionary cooperative-competitive algorithm for Radial Basis Function Networks design, to the medium-term forecasting of the extra-virgen olive price, carry out by the SIMIDAT research group. The forecast is about the price at source of the extra-virgin olive oil six months ahead. The influential of the feature selection algorithms over the forecasting of the extra-virgin olive oil price has been analysed in this study and the results obtained with CO2RBFN have been compared with those obtained by different soft computing methods.

Keywords

times series forecasting olive oil RBFN technical indicator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. J. of Mult.-Valued Logic & Soft Computing 17, 255–287 (2011)Google Scholar
  2. 2.
    Atsalakis, G.S., Valavanis, K.P.: Surveying stock market forecasting techniques - part ii: Soft computing methods. Expert Systems with Applications 36(3,Part 2), 5932–5941 (2009)CrossRefGoogle Scholar
  3. 3.
    García, F., García, M., Melián, B., Moreno, J.A., Marcos, J.: Solving feature subset selection problem by a parallel scatter search. European Journal of Operational Research 169, 477–489 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ghost, J., Deuser, L., Beck, S.: A neural network based hybrid system for detection, characterization and classification of short-duration oceanic signals. IEEE Journal of Ocean Enginering 17(4), 351–363 (1992)CrossRefGoogle Scholar
  5. 5.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  6. 6.
    Gütlein, M., Frank, E., Hall, M., Karwath, A.: Large scale attribute selection using wrappers. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (1999)Google Scholar
  7. 7.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)zbMATHGoogle Scholar
  8. 8.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explorations 11(1) (2009)Google Scholar
  9. 9.
    Hall, M., Smith, L.A.: Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. In: Twelfth International FLAIRS Conference, MIT Press, AAAI/ (1999)Google Scholar
  10. 10.
    Moller, F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525–533 (1990)CrossRefGoogle Scholar
  11. 11.
    Pérez-Godoy, M.D., Pérez, P., Rivera, A.J., del Jesus, M.J., Carmona, C.J., Frías, M.P., Parras, M.: co 2 rbfn for short-term forecasting of the extra virgin olive oil price in the spanish market. International Journal of Hybrid Intelligent Systems 7(1), 75–87 (2010)CrossRefGoogle Scholar
  12. 12.
    Rivera, A.J., Pérez-Recuerda, P., Pérez-Godoy, M.D., del Jesus, M.J., Frías, M.P., Parras, M.: A study on the medium-term forecasting using exogenous variable selection of the extra-virgin olive oil with soft computing methods. Applied Intelligent 34(3), 331–346 (2011)CrossRefGoogle Scholar
  13. 13.
    Sánchez, L., Couso, I.: Fuzzy random variables-based modeling with ga-p algorithms. In: Bouchon, B., Yager, R.R., Zadeh, L. (eds.) Information, Uncertainty and Fusion, pp. 245–256 (2000)Google Scholar
  14. 14.
    Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, madaline and backpropagation. Proceedings of the IEEE 78(9), 1415–1442 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Antonio Jesús Rivera
    • 1
  • María Dolores Pérez-Godoy
    • 1
  • María José del Jesus
    • 1
  • Pedro Pérez-Recuerda
    • 1
  • María Pilar Frías
    • 1
  • Manuel Parras
    • 1
  1. 1.University of JaénSpain

Personalised recommendations