The von Mises Naive Bayes Classifier for Angular Data

  • Pedro L. López-Cruz
  • Concha Bielza
  • Pedro Larrañaga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7023)


Directional and angular information are to be found in almost every field of science. Directional statistics provides the theoretical background and the techniques for processing such data, which cannot be properly managed by classical statistics. The von Mises distribution is the best known angular distribution. We extend the naive Bayes classifier to the case where directional predictive variables are modeled using von Mises distributions. We find the decision surfaces induced by the classifiers and illustrate their behavior with artificial examples. Two applications to real data are included to show the potential uses of these models. Comparisons with classical techniques yield promising results.


Naive Bayes classifier supervised classification circular statistics directional statistics angular data von Mises distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press (1993)Google Scholar
  2. 2.
    Mardia, K.V., Jupp, P.E.: Directional Statistics. John Wiley and Sons (2000)Google Scholar
  3. 3.
    Minsky, M.: Steps toward artificial intelligence. Proc. Inst. Radio. Eng. 49, 8–30 (1961)MathSciNetGoogle Scholar
  4. 4.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley and Sons (1973)Google Scholar
  5. 5.
    Koller, D., Friedman, N.: Probabilistic Graphical Models. Principles and Techniques. The MIT Press (2009)Google Scholar
  6. 6.
    Pourret, O., Naïm, P., Marcot, B.: Bayesian Networks: A Practical Guide to Applications. John Wiley and Sons (2008)Google Scholar
  7. 7.
    Domingos, P., Pazzani, M.: Beyond independence: Conditions for the optimality of the simple Bayesian classifier. Mach. Learn. 29, 103–130 (1997)CrossRefzbMATHGoogle Scholar
  8. 8.
    Peot, M.A.: Geometric implications of the naive Bayes assumption. In: Horvitz, E., Jensen, F.V. (eds.) Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence, pp. 414–419. Morgan Kauffman (1996)Google Scholar
  9. 9.
    Perrin, F.: Étude mathématique du mouvement Brownien de rotation. Ann. Sci. Ec. Norm. Super. 45, 1–51 (1928)zbMATHGoogle Scholar
  10. 10.
    von Mises, R.: Über die “Ganzzahligkeit” der Atomgewichte und verwandte Fragen. Physikal. Z. 19, 490–500 (1918)zbMATHGoogle Scholar
  11. 11.
    Berens, P.: CircStat: A MATLAB toolbox for circular statistics. J. Stat. Softw. 31(10), 1–21 (2009)CrossRefGoogle Scholar
  12. 12.
    Kovach, W.L.: Quantitative methods for the study of lycopod megaspore ultrastructure. Rev. Palaeobot. Palynology 57(3-4), 233–246 (1989)CrossRefGoogle Scholar
  13. 13.
    Berkholz, D.S., Krenesky, P.B., Davidson, J.R., Karplus, P.A.: Protein geometry database: A flexible engine to explore backbone conformations and their relationships to covalent geometry. Nucleic Acids Res. 38(suppl.1), D320–D325 (2010)CrossRefGoogle Scholar
  14. 14.
    Mardia, K.V., Taylor, C.C., Subramaniam, G.K.: Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data. Biometrics 63(2), 505–512 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Boomsma, W., Mardia, K.V., Taylor, C.C., Ferkinghoff-Borg, J., Krogh, A., Hamelryck, T.: A generative, probabilistic model of local protein structure. Proc. Natl. Acad. Sci. U.S.A. 105(26), 8932–8937 (2008)CrossRefGoogle Scholar
  16. 16.
    Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial Intelligence, pp. 1022–1027. Morgan Kaufmann (1993)Google Scholar
  17. 17.
    Bouckaert, R.R.: Estimating replicability of classifier learning experiments. In: Brodley, C.E. (ed.) Proceedings of the 21st International Conference on Machine Learning. ACM (2004)Google Scholar
  18. 18.
    Pazzani, M.J.: Searching for dependencies in Bayesian classifiers. Lecture Notes in Statistics 112, 239–248 (1995)CrossRefGoogle Scholar
  19. 19.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sahami, M.: Learning limited dependence Bayesian classifiers. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 335–338. AAAI Press (1996)Google Scholar
  21. 21.
    Mardia, K.V., El-Atoum, S.A.M.: Bayesian analysis for bivariate von Mises distributions. J. Appl. Stat. 37(3), 515–528 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pedro L. López-Cruz
    • 1
  • Concha Bielza
    • 1
  • Pedro Larrañaga
    • 1
  1. 1.Computational Intelligence Group Departamento de Inteligencia Artificial Facultad de InformáticaUniversidad Politécnica de MadridBoadilla del MonteSpain

Personalised recommendations