Automated Verification of Executable UML Models

  • Helle Hvid Hansen
  • Jeroen Ketema
  • Bas Luttik
  • MohammadReza Mousavi
  • Jaco van de Pol
  • Osmar Marchi dos Santos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6957)

Abstract

We present a fully automated approach to verifying safety properties of Executable UML models (xUML). Our tool chain consists of a model transformation program which translates xUML models to the process algebra mCRL2, followed by symbolic model checking using LTSmin. If a safety violation is found, an error trace is visualised as a UML sequence diagram. As a novel feature, our approach allows safety properties to be specified as UML state machines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM Transactions on Programming Languages and Systems 23(3), 273–303 (2001)CrossRefGoogle Scholar
  3. 3.
    ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-checking approach for the analysis of abstract system properties. Science of Computer Programming 76(2), 119–135 (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Behrmann, G., Larsen, K.G., Andersen, H.R., Hulgaard, H., Lind-Nielsen, J.: Verification of hierarchical state/event systems using reusability and compositionality. Formal Methods in System Design 21(2), 225–244 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60(1-3), 109–137 (1984)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 118–149 (2003)Google Scholar
  7. 7.
    Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test cases using observer automata. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 125–139. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Blom, S., van de Pol, J., Weber, M.: LTSmin: Distributed and symbolic reachability. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Ciardo, G., Lüttgen, G., Miner, A.S.: Exploiting interleaving semantics in symbolic state-space generation. Formal Methods in System Design 31(1), 63–100 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.: Formal verification of a railway interlocking system using model checking. Formal Aspects of Computing 10(4), 361–380 (1998)CrossRefMATHGoogle Scholar
  11. 11.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. Journal of the ACM 50(5), 752–794 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Damm, W., Josko, B., Pnueli, A., Votintseva, A.: A discrete-time UML semantics for concurrency and communication in safety-critical applications. Science of Computer Programming 55, 81–155 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Eriksson, L.-H.: Specifying railway interlocking requirements for practical use. In: Proceedings of the 15th International Conference on Computer Safety, Reliability and Security (SAFECOMP 1996). Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Fokkink, W.: Safety criteria for the vital processor interlocking at Hoorn-Kersenboogerd. In: Computers in Railways V (COMPRAIL 1996). Railway Systems and Management, vol. I (1996)Google Scholar
  15. 15.
    Formal Systems (Europe) Ltd. Failures-divergence refinement: FDR2 User Manual (2010)Google Scholar
  16. 16.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A toolbox for the construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Geilen, M.: On the construction of monitors for temporal logic properties. Electr. Notes in Theor. Comp. Sci. 55(2) (2001)Google Scholar
  18. 18.
    Ghazel, M., Toguyéni, A., Yim, P.: State observer for DES under partial observation with timed petri nets. Discrete Event Dynamic Systems 19(2), 137–165 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gnesi, S., Latella, D., Lenzini, G., Abbaneo, C., Amendola, A.M., Marmo, P.: An automatic SPIN validation of a safety critical railway control system. In: Proceedings of the 2000 Int. Conf. on Dependable Systems and Networks, pp. 119–124. IEEE Computer Society, Washington, DC, USA (2000)CrossRefGoogle Scholar
  20. 20.
    Graw, G., Herrmann, P.: Transformation and verification of Executable UML models. In: Proceedings of the Workshop on the Compositional Verification of UML Models. Electr. Notes in Theor. Comp. Sci, vol. 101, pp. 3–24 (2004)Google Scholar
  21. 21.
    Groote, J.F., Mathijssen, A., Reniers, M.A., Usenko, Y.S., van Weerdenburg, M.: The formal specification language mCRL2. In: Methods for Modelling Software Systems. Dagstuhl Seminar Proceedings, vol. 06351 (2007)Google Scholar
  22. 22.
    Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J.: Towards model checking Executable UML specifications in mCRL2. Innovations in Systems and Software Engineering 6(1-2), 83–90 (2010)CrossRefGoogle Scholar
  23. 23.
    Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and refinement of textual syntax for models. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 114–129. Springer, Heidelberg (2009), http://www.emftext.org (last visit: July 4, 2011)CrossRefGoogle Scholar
  24. 24.
    Hoare, T.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  25. 25.
    Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Reading (2003)Google Scholar
  26. 26.
    ISO/IEC. Enhancements to Lotos (E-Lotos), International Standard 15437:2001 (2001)Google Scholar
  27. 27.
    ISO/IEEE. ISO/IEEE 11073-20601: Health infomatics — personal health device communication — Part 20601: Application profile — optimized exchange protocol (April 2010)Google Scholar
  28. 28.
    Keiren, J.: Modelling session setup of IEEE Std 11073-20601 (2011), Personal communicationGoogle Scholar
  29. 29.
    KnowGravity. Cassandra/xUML User’s Guide (2008)Google Scholar
  30. 30.
    Kolovos, D.: An Extensible Platform for Specification of Integrated Languages for Model Management. PhD thesis, University of York, United Kingdom (2009), http://www.eclipse.org/gmt/epsilon/ (last visit: July 4, 2011)
  31. 31.
    Kolovos, D., Rose, L., Paige, R.: The Epsilon Book, http://www.eclipse.org/gmt/epsilon/doc/book/ (last visit: July 4, (2011)
  32. 32.
    Lafortune, S., Teneketzis, D., Sampath, M., Sengupta, R., Sinnamohideen, K.: Failure diagnosis of dynamic systems: an approach based on discrete event systems. In: Proceedings of the American Control Conference, vol. 3, pp. 2058–2071 (2001)Google Scholar
  33. 33.
    Lind-Nielsen, J., Andersen, H.R., Hulgaard, H., Behrmann, G., Kristoffersen, K.J., Larsen, K.G.: Verification of large state/event systems using compositionality and dependency analysis. Formal Methods in System Design 18(1), 5–23 (2001)CrossRefMATHGoogle Scholar
  34. 34.
    Mekki, A., Ghazel, M., Toguyeni, A.: Time-constrained systems validation using MDA model transformation. A railway case study. In: Proceedings of the 8th International Conference of Modeling and Simulation, MOSIM 2010 (2010)Google Scholar
  35. 35.
    Mellor, S.J., Balcer, M.: Executable UML: A foundation for model-driven architecture. Addison-Wesley, Reading (2002)Google Scholar
  36. 36.
    Object Management Group. OMG Unified Modeling Language Superstructure Version 2.2 (February 2009)Google Scholar
  37. 37.
    Papyrus Developers. Papyrus: Open source tool for graphical UML2 modelling, http://www.papyrusuml.org (last visit: July 4, 2011)
  38. 38.
    Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Systems Security 3(1), 30–50 (2000)CrossRefGoogle Scholar
  39. 39.
    Sheeran, M., Stålmarck, G.: A tutorial on stålmarck’s proof procedure for propositional logic. In: Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 82–99. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  40. 40.
    Sighireanu, M.: LOTOS NT user’s manual. Technical report, INRIA Rhône-Alpes/VASY (2008)Google Scholar
  41. 41.
    Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework. Addison-Wesley Professional, Boston (2008), http://www.eclipse.org/modeling/emf/ (last visit: July 4, 2011)Google Scholar
  42. 42.
    Turner, E., Treharne, H., Schneider, S., Evans, N.: Automatic generation of CSP || B skeletons from xUML models. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 364–379. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  43. 43.
    Winter, K., Robinson, N.J.: Modelling large railway interlockings and model checking small ones. In: ACSC 2003: Proceedings of the 26th Australasian Comp. Sci. Conference, pp. 309–316. Australian Computer Society, Inc. (2003)Google Scholar
  44. 44.
    Yeung, W.L., Leung, K.R.P.H., Wang, J., Dong, W.: Improvements towards formalizing UML state diagrams in CSP. In: Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC 2005). IEEE Computer Society, Los Alamitos (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Helle Hvid Hansen
    • 1
  • Jeroen Ketema
    • 2
  • Bas Luttik
    • 1
  • MohammadReza Mousavi
    • 1
  • Jaco van de Pol
    • 2
  • Osmar Marchi dos Santos
    • 3
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.University of TwenteEnschedeThe Netherlands
  3. 3.University of YorkYorkEngland

Personalised recommendations