An Ontology-Based Method for an Efficient Acquisition of Relation Extraction Training and Testing Examples

  • Aleksander Pohl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7053)


In this paper, we describe an ontology-based method of selection of test examples for relation extraction, as well as a method of their validation apt to be carried out by ordinary language-speakers. The results will be used to validate performance of various relation extraction algorithms. In performed tests we utilize the ResearchCyc ontology and demonstrate the method’s performance in gathering examples from Polish texts.


relation extraction Polish ontology Cyc corpus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Cunningham, D., Maynard, D., Bontcheva, D., Tablan, M.: GATE: A framework and graphical development environment for robust NLP tools and applications. In: Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics, ACL 2002 (2002)Google Scholar
  4. 4.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)Google Scholar
  5. 5.
    Hendrickx, I., Kim, S., Kozareva, Z., Nakov, P., Séaghdha, D., Padó, S., Pennacchiotti, M., Romano, L., Szpakowicz, S.: Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 33–38. Association for Computational Linguistics (2010)Google Scholar
  6. 6.
    Israel, G.: Determining sample size. University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS (1992)Google Scholar
  7. 7.
    Jurafsky, D., Martin, J., Kehler, A.: Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition, 2nd edn. Prentice Hall (2009)Google Scholar
  8. 8.
    Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM 38(11), 33–38 (1995)CrossRefGoogle Scholar
  9. 9.
    Markowitz, J., Ahlswede, T., Evens, M.: Semantically significant patterns in dictionary definitions. In: Proceedings of the 24th Annual Meeting on Association for Computational Linguistics, pp. 112–119. Association for Computational Linguistics (1986)Google Scholar
  10. 10.
    Pantel, P., Pennacchiotti, M.: Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In: Proceedings of Conference on Computational Linguistics/ Association for Computational Linguistics, Sydney, Australia, pp. 113–120 (2006)Google Scholar
  11. 11.
    Piasecki, M., Szpakowicz, S., Broda, B.: A Wordnet from the Ground Up. Oficyna Wydawnicza Politechniki Wrocławskiej (2009)Google Scholar
  12. 12.
    Pisarek, P.: Słownik fleksyjny. In: Słowniki komputerowe i Automatyczna Ekstrakcja Informacji z Tekstu, pp. 37–68. Uczelniane Wydawnictwo Naukowo-Dydaktyczne AGH (2009)Google Scholar
  13. 13.
    Pohl, A.: The Semi-automatic Construction of the Polish Cyc Lexicon. Investigationes Linguisticae 21 (2010)Google Scholar
  14. 14.
    Przepiórkowski, A.: Korpus IPI PAN. Wersja wstępna. Instytut Podstaw Informatyki PAN (2004)Google Scholar
  15. 15.
    Przepiórkowski, A.: The potential of the IPI PAN corpus. Poznań Studies in Contemporary Linguistics 41, 31–48 (2006)Google Scholar
  16. 16.
    Savary, A., Waszczuk, J., Przepiórkowski, A.: Towards the Annotation of Named Entities in the National Corpus of Polish. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation, LREC 2010 (2010)Google Scholar
  17. 17.
    Suchanek, F., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706. ACM (2007)Google Scholar
  18. 18.
    Wang, G., Yu, Y., Zhu, H.: PORE: Positive-only relation extraction from wikipedia text. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 580–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aleksander Pohl
    • 1
  1. 1.Computational Linguistics DepartmentJagiellonian UniversityCracowPoland

Personalised recommendations