Scale Invariant Bipartite Graph Generative Model

  • Szymon Chojnacki
  • Mieczysław A. Kłopotek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7053)

Abstract

The purpose of this article is to present new undirected bigraph generator. Bigraphs (or bipartite graphs) contain nodes of two types and there exist edges only between nodes of different types. This data structure can be observed in various real-life scenarios. Random generator can be used to describe and better understand the scenarios. Moreover, the generator can output a wide range of synthetic datasets. We believe that the datasets can be utilized to evaluate performance of various algorithms that are deployed in such settings. The generative procedure is based on the preferential attachment principle. The principle is combined with the iterative growth mechanism and results in the power-law node degree distribution. Our algorithm extends the classic Barabási - Albert model. We obtain the same scaling exponent as in the classic model, when we set equal parameters for both modalities. However, when we abandon the symmetry we are able to build graphs with wider spectrum of scaling exponents.

Keywords

Bipartite Graph Random Graph Degree Distribution Preferential Attachment Scaling Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erdös, P., Renyi, A.: On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences (1960)Google Scholar
  2. 2.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Pennock, D.M., Flake, G.W., Lawrence, S., Glover, E.J., Giles, C.L.: Winners don’t take all: Characterizing the competition for links on the web. Proc. Natl. Acad. Sci. USA 99(8), 5207–5211 (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Levene, M., Fenner, T.I., Loizou, G., Wheeldon, R.: A stochastic model for the evolution of the web. Computer Networks 39(3), 277–287 (2002)CrossRefGoogle Scholar
  5. 5.
    Dorogovtsev, S., Mendes, J., Samulkin, A.: Structure of growing networks: Exact solution of the barabasi-albert model. Physical Review Letters 85, 4633–4636 (2000)CrossRefGoogle Scholar
  6. 6.
    Albert, R., Barabási, A.: Topology of evolving networks: Local events and universality. Physical Review Letters 85(24), 5234–5237 (2000)CrossRefGoogle Scholar
  7. 7.
    Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS), Redondo Beach, CA, USA, pp. 57–65. IEEE CS Press (2000)Google Scholar
  9. 9.
    Milgram, S.: The small-world problem. Psychology Today 2, 60–67 (1967)Google Scholar
  10. 10.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  11. 11.
    Waxman, B.: Routing of mulitpoint connections. IEEE Journal of Selected Areas in Communications 6, 1617–1622 (1988)CrossRefGoogle Scholar
  12. 12.
    Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD 2005: Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM Press, New York (2005)CrossRefGoogle Scholar
  14. 14.
    Galaskiewicz, J., Wasserman, S., Rauschenbach, B., Bielefeld, W., Mullaney, P.: The influence of class, status, and market position on corporate interlocks in a regional network. Social Forces (1985)Google Scholar
  15. 15.
    Newman, M., Watts, D., Strogatz, S.: Random graph models of social networks. P. Natl. Acad. Sci. USA 99, 2566–2572 (2002)CrossRefMATHGoogle Scholar
  16. 16.
    Guillaume, J.-L., Latapy, M.: Bipartite structure of all complex networks. Inf. Process. Lett. 90(5), 215–221 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Eisterlehner, F., Hotho, A., Jaschke, R. (eds.): ECML PKDD Discovery Challenge 2009 (DC 2009). CEUR-WS.org, vol. 497 (September 2009)Google Scholar
  18. 18.
    Harrell, F.E.: Regression Modeling Strategies, with Applications to Linear Models, Survival Analysis and Logistic Regression. Springer, Heidelberg (2001) ISBN 0-387-95232-2MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Szymon Chojnacki
    • 1
  • Mieczysław A. Kłopotek
    • 1
  1. 1.Institute of Computer Science PASWarsawPoland

Personalised recommendations