Transactions on Computational Science XIV pp 60-101

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6970) | Cite as

Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web

  • Rien van de Weygaert
  • Gert Vegter
  • Herbert Edelsbrunner
  • Bernard J. T. Jones
  • Pratyush Pranav
  • Changbom Park
  • Wojciech A. Hellwing
  • Bob Eldering
  • Nico Kruithof
  • E. G. P. (Patrick) Bos
  • Johan Hidding
  • Job Feldbrugge
  • Eline ten Have
  • Matti van Engelen
  • Manuel Caroli
  • Monique Teillaud

Abstract

We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them.

For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. These can be tuned to consist of specific morphological elements of the Cosmic Web, i.e. clusters, filaments, or sheets. To elucidate the relative prominence of the various Betti numbers in different stages of morphological evolution, we introduce the concept of alpha tracks.

Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web. We also demonstrate that the scale-dependence of the Betti numbers yields a promising measure of cosmological parameters, with a potential to help in determining the nature of dark energy and to probe primordial non-Gaussianities. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field.

Finally, we introduce the concept of persistent homology. It measures scale levels of the mass distribution and allows us to separate small from large scale features. Within the context of the hierarchical cosmic structure formation, persistence provides a natural formalism for a multiscale topology study of the Cosmic Web.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R.J., Bobrowski, O., Borman, M.S., Subag, E., Weinberger, S.: Persistent homology for random fields and complexes. Collections, 1–6 (2010), http://arxiv.org/abs/1003.1001
  2. 2.
    Adler, R.J., Taylor, J.E.: Random fields and geometry (2007)Google Scholar
  3. 3.
    Bardeen, J.M., Bond, J.R., Kaiser, N., Szalay, A.S.: The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15–61 (1986)CrossRefGoogle Scholar
  4. 4.
    Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. IEEE Trans. Vis. Comput. Graph. 16(6), 1251–1260 (2010)CrossRefGoogle Scholar
  5. 5.
    Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Spergel, D.N., Tucker, G.S., Wollack, E., Wright, E.L., Barnes, C., Greason, M.R., Hill, R.S., Komatsu, E., Nolta, M.R., Odegard, N., Peiris, H.V., Verde, L., Weiland, J.L.: First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. Astrophys. J. Suppl. 148, 1–27 (2003)CrossRefGoogle Scholar
  6. 6.
    Bond, J., Kofman, L., Pogosyan, D.: How filaments are woven into the cosmic web. Nature 380, 603–606 (1996)CrossRefGoogle Scholar
  7. 7.
    de Boni, C., Dolag, K., Ettori, S., Moscardini, L., Pettorino, V., Baccigalupi, C.: Hydrodynamical simulations of galaxy clusters in dark energy cosmologies. Mon. Not. R. Astron. Soc. 414, 780 (2011)Google Scholar
  8. 8.
    Bos, P.C. , van de Weygaert, R., Dolag, K., Pettorino, V.: Void shapes as probes of the nature of dark energy. Mon. Not. R. Astron. Soc. (2011)Google Scholar
  9. 9.
    Calvo, M.A.A., Shandarin, S.F., Szalay, A.: Geometry of the cosmic web: Minkowski functionals from the delaunay tessellation. In: International Symposium on Voronoi Diagrams in Science and Engineering, pp. 235–243 (2010)Google Scholar
  10. 10.
    Cautun, M.C., van de Weygaert, R.: The DTFE public software - The Delaunay Tessellation Field Estimator code. ArXiv e-prints (May 2011)Google Scholar
  11. 11.
    Choi, Y.Y., Park, C., Kim, J., Gott, J.R., Weinberg, D.H., Vogeley, M.S., Kim, S.S.: For the SDSS Collaboration: Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models. Astrophys. J. Suppl. 190, 181–202 (2010)CrossRefGoogle Scholar
  12. 12.
    Colless, M.: 2dF consortium: The 2df galaxy redshift survey: Final data release pp. 1–32 (2003); astroph/0306581Google Scholar
  13. 13.
    Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for betti numbers of simplicial complexes. In: Symposium on Computational Geometry, pp. 232–239 (1993)Google Scholar
  14. 14.
    Dey, T., Edelsbrunner, H., Guha, S.: Computational topology. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, pp. 109–143. American Mathematical Society (1999)Google Scholar
  15. 15.
    Edelsbrunner, H.: Alpha shapes - a survey. In: van de Weygaert, R., Vegter, G., Ritzerveld, J., Icke, V. (eds.) Tessellations in the Sciences; Virtues, Techniques and Applications of Geometric Tilings. Springer, Heidelberg (2010)Google Scholar
  16. 16.
    Edelsbrunner, H., Facello, M., Liang, J.: On the definition and the construction of pockets in macromolecules. Discrete Appl. Math. 88, 83–102 (1998)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Edelsbrunner, H., Harer, J.: Computational Topology, An Introduction. American Mathematical Society (2010)Google Scholar
  18. 18.
    Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inform. Theory 29, 551–559 (1983)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistance and simplification. Discrete and Computational Geometry 28, 511–533 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Edelsbrunner, H., Muecke, E.: Three-dimensional alpha shapes. ACM Trans. Graphics 13, 43–72 (1994)CrossRefMATHGoogle Scholar
  21. 21.
    Eisenstein, D.J., Hu, W.: Baryonic Features in the Matter Transfer Function. Astrophys.J. 496, 605–614 (1998)CrossRefGoogle Scholar
  22. 22.
    Eldering, B.: Topology of Galaxy Models, MSc thesis, Univ. Groningen (2006)Google Scholar
  23. 23.
    Gott, J.R., Choi, Y.Y., Park, C., Kim, J.: Three-Dimensional Genus Topology of Luminous Red Galaxies. Astrophys. J. Lett. 695, L45–L48 (2009)CrossRefGoogle Scholar
  24. 24.
    Gott III, J.R., Miller, J., Thuan, T.X., Schneider, S.E., Weinberg, D.H., Gammie, C., Polk, K., Vogeley, M., Jeffrey, S., Bhavsar, S.P., Melott, A.L., Giovanelli, R., Hayes, M.P., Tully, R.B., Hamilton, A.J.S.: The topology of large-scale structure. III - Analysis of observations. Astrophys. J. 340, 625–646 (1989)CrossRefGoogle Scholar
  25. 25.
    Gott, J., Dickinson, M., Melott, A.: The sponge-like topology of large-scale structure in the universe. Astrophys. J. 306, 341–357 (1986)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hamilton, A.J.S., Gott III, J.R., Weinberg, D.: The topology of the large-scale structure of the universe. Astrophys. J. 309, 1–12 (1986)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hoyle, F., Vogeley, M.S., Gott III, J.R., Blanton, M., Tegmark, M., Weinberg, D.H., Bahcall, N., Brinkmann, J., York, D.: Two-dimensional Topology of the Sloan Digital Sky Survey. Astrophys. J. 580, 663–671 (2002)CrossRefGoogle Scholar
  28. 28.
    Huchra, J., et al.: The 2mass redshift survey and low galactic latitude large-scale structure. In: Fairall, A.P., Woudt, P.A. (eds.) Nearby Large-Scale Structures and the Zone of Avoidance. ASP Conf. Ser., vol. 239, pp. 135–146. Astron. Soc. Pacific, San Francisco (2005)Google Scholar
  29. 29.
    Icke, V.: Voids and filaments. Mon. Not. R. Astron. Soc. 206, 1P–3P (1984)CrossRefGoogle Scholar
  30. 30.
    Kauffmann, G., Colberg, J.M., Diaferio, A., White, S.D.M.: Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0. Mon. Not. R. Astron. Soc. 303, 188–206 (1999)CrossRefGoogle Scholar
  31. 31.
    Komatsu, E., Smith, K.M., Dunkley, J., et al.: Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. eprint arXiv:1001.4538 (January 2010)Google Scholar
  32. 32.
    Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P., Subramaniam, S.: Analytical shape computation of macromolecules: I. molecular area and volume through alpha shape. Proteins: Structure, Function, and Genetics 33, 1–17 (1998)CrossRefGoogle Scholar
  33. 33.
    Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P., Subramaniam, S.: Analytical shape computation of macromolecules: Ii. inaccessible cavities in proteins. Proteins: Structure, Function, and Genetics 33, 18–29 (1998)CrossRefGoogle Scholar
  34. 34.
    Liang, J., Woodward, C., Edelsbrunner, H.: Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Science 7, 1884–1897 (1998)CrossRefGoogle Scholar
  35. 35.
    Mecke, K., Buchert, T., Wagner, H.: Robust morphological measures for large-scale structure in the universe. Astron. Astrophys. 288, 697–704 (1994)Google Scholar
  36. 36.
    Moore, B., Frenk, C.S., Weinberg, D.H., Saunders, W., Lawrence, A., Ellis, R.S., Kaiser, N., Efstathiou, G., Rowan-Robinson, M.: The topology of the QDOT IRAS redshift survey. Mon. Not. R. Astron. Soc. 256, 477–499 (1992)CrossRefGoogle Scholar
  37. 37.
    Muecke, E.: Shapes and Implementations in three-dimensional geometry, PhD thesis, Univ. Illinois Urbana-Champaign (1993)Google Scholar
  38. 38.
    Park, C., Chingangbam, P., van de Weygaert, R., Vegter, G., Kim, I., Hidding, J., Hellwing, W., Pranav, P.: Betti numbers of gaussian random fields. Astrophys. J. (2011) (to be subm.)Google Scholar
  39. 39.
    Park, C., Gott III, J.R., Melott, A.L., Karachentsev, I.D.: The topology of large-scale structure. VI - Slices of the universe. Astrophys. J. 387, 1–8 (1992)Google Scholar
  40. 40.
    Park, C., Kim, J., Gott III, J.R.: Effects of Gravitational Evolution, Biasing, and Redshift Space Distortion on Topology. Astrophys. J. 633, 1–10 (2005)CrossRefGoogle Scholar
  41. 41.
    Park, C., Kim, Y.R.: Large-scale Structure of the Universe as a Cosmic Standard Ruler. Astrophys. J. Lett. 715, L185–L188 (2010)CrossRefGoogle Scholar
  42. 42.
    Peebles, P.: The Large Scale Structure of the Universe. Princeton Univ. Press (1980)Google Scholar
  43. 43.
    Pranav, P., Edelsbrunner, H., van de Weygaert, R., Vegter, G.: On the alpha and betti of the universe: Multiscale persistence of the cosmic web. Mon. Not. R. Astron. Soc. (2011) (to be subm.)Google Scholar
  44. 44.
    Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D. 37, 3406–3427 (1988)CrossRefGoogle Scholar
  45. 45.
    Sahni, V., Sathyprakash, B.S., Shandarin, S.: Shapefinders: A new shape diagnostic for large-scale structure. Astrophys. J. 507, L109–L112 (1998)CrossRefGoogle Scholar
  46. 46.
    Schaap, W.E., van de Weygaert, R.: Continuous fields and discrete samples: reconstruction through Delaunay tessellations. Astron. Astrophys. 32, L29–L32 (2000)Google Scholar
  47. 47.
    Schmalzing, J., Buchert, T.: Beyond Genus Statistics: A Unifying Approach to the Morphology of Cosmic Structure. Astrophys. J. Lett. 482, L1–L4 (1997)CrossRefGoogle Scholar
  48. 48.
    Schmalzing, J., Buchert, T., Melott, A., Sahni, V., Sathyaprakash, B., Shandarin, S.: Disentangling the cosmic web. i. morphology of isodensity contours. Astrophys. J. 526, 568–578 (1999)CrossRefGoogle Scholar
  49. 49.
    Sheth, R.K., van de Weygaert, R.: A hierarchy of voids: much ado about nothing. Mon. Not. R. Astron. Soc. 350, 517–538 (2004)CrossRefGoogle Scholar
  50. 50.
    Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., Boggess, N.W., Cheng, E.S., de Amici, G., Gulkis, S., Hauser, M.G., Hinshaw, G., Jackson, P.D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S.S., Moseley, S.H., Murdock, T., Rokke, L., Silverberg, R.F., Tenorio, L., Weiss, R., Wilkinson, D.T.: Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. Lett. 396, L1–L5 (1992)CrossRefGoogle Scholar
  51. 51.
    Sousbie, T.: The persistent cosmic web and its filamentary structure - I. Theory and implementation. Mon. Not. R. Astron. Soc., pp. 511–+ (April 2011)Google Scholar
  52. 52.
    Sousbie, T., Colombi, S., Pichon, C.: The fully connected N-dimensional skeleton: probing the evolution of the cosmic web. Mon. Not. R. Astron. Soc. 393, 457–477 (2009)CrossRefGoogle Scholar
  53. 53.
    Sousbie, T., Pichon, C., Colombi, S., Novikov, D., Pogosyan, D.: The 3D skeleton: tracing the filamentary structure of the Universe. Mon. Not. R. Astron. Soc. 383, 1655–1670 (2008)CrossRefGoogle Scholar
  54. 54.
    Sousbie, T., Pichon, C., Courtois, H., Colombi, S., Novikov, D.: The Three-dimensional Skeleton of the SDSS. Astrophys. J. Lett. 4, L1–L4 (2008)CrossRefGoogle Scholar
  55. 55.
    Sousbie, T., Pichon, C., Kawahara, H.: The persistent cosmic web and its filamentary structure - II. Illustrations. Mon. Not. R. Astron. Soc., pp. 530–+ (2011)Google Scholar
  56. 56.
    Spergel, D.N., Bean, R., Doré, O., Nolta, M.R., Bennett, C.L., Dunkley, J., Hinshaw, G., Jarosik, N., Komatsu, E., Page, L., Peiris, H.V., Verde, L., Halpern, M., Hill, R.S., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. Astrophys. J. Suppl. 170, 377–408 (2007)CrossRefGoogle Scholar
  57. 57.
    Springel, V., et al.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)CrossRefGoogle Scholar
  58. 58.
    Tegmark, M., et al.: The three-dimensional power spectrum of galaxies from the sloan digital sky survey. Astrophys. J. 606, 702–740 (2004)CrossRefGoogle Scholar
  59. 59.
    van de Weygaert, R.: Voids and the geometry of large scale structure, PhD thesis, University of Leiden (1991)Google Scholar
  60. 60.
    van de Weygaert, R., Bertschinger, E.: Peak and gravity constraints in Gaussian primordial density fields: An application of the Hoffman-Ribak method. Mon. Not. R. Astron. Soc. 281, 84–118 (1996)CrossRefGoogle Scholar
  61. 61.
    van de Weygaert, R., Bond, J.R.: Clusters and the Theory of the Cosmic Web. In: Plionis, M., López-Cruz, O., Hughes, D. (eds.) A Pan-Chromatic View of Clusters of Galaxies and the Large-Scale Structure. Lecture Notes in Physics, vol. 740, pp. 335–407. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  62. 62.
    van de Weygaert, R., Bond, J.R.: Observations and Morphology of the Cosmic Web. In: Plionis, M., López-Cruz, O., Hughes, D. (eds.) A Pan-Chromatic View of Clusters of Galaxies and the Large-Scale Structure. Lecture Notes in Physics, vol. 740, pp. 409–467. Springer, Berlin (2008)CrossRefGoogle Scholar
  63. 63.
    van de Weygaert, R., Icke, V.: Fragmenting the universe. II - Voronoi vertices as Abell clusters. Astron. Astrophys. 213, 1–9 (1989)Google Scholar
  64. 64.
    van de Weygaert, R., Schaap, W.: The Cosmic Web: Geometric Analysis. In: Martínez, V.J., Saar, E., Martínez-González, E., Pons-Bordería, M.-J. (eds.) Data Analysis in Cosmology. Lecture Notes in Physics, vol. 665, pp. 291–413. Springer, Berlin (2009)CrossRefGoogle Scholar
  65. 65.
    Vegter, G.: Computational topology. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch. 32, pp. 719–742. CRC Press LLC, Boca Raton (2004)Google Scholar
  66. 66.
    Vegter, G., van de Weygaert, R., Platen, E., Kruithof, N., Eldering, B.: Alpha shapes and the topology of cosmic large scale structure. Mon. Not. R. Astron. Soc. (2010) (in prep.)Google Scholar
  67. 67.
    Vogeley, M.S., Park, C., Geller, M.J., Huchra, J.P., Gott III, J.R.: Topological analysis of the CfA redshift survey. Astrophys. J. 420, 525–544 (1994)CrossRefGoogle Scholar
  68. 68.
    van de Weygaert, R., Pranav, P., Jones, B., Vegter, G., Bos, P., Park, C., Hellwing, W.: Probing dark energy with betti-analysis of simulations. Astrophys. J. Lett. (2011) (to be subm.)Google Scholar
  69. 69.
    van de Weygaert, R., Platen, E., Vegter, G., Eldering, B., Kruithof, N.: Alpha shape topology of the cosmic web. In: International Symposium on Voronoi Diagrams in Science and Engineering, pp. 224–234 (2010)Google Scholar
  70. 70.
    van de Weygaert, R.: Voronoi tessellations and the cosmic web: Spatial patterns and clustering across the universe. In: ISVD 2007: Proceedings of the 4th International Symposium on Voronoi Diagrams in Science and Engineering, pp. 230–239. IEEE Computer Society, Washington, DC (2007)Google Scholar
  71. 71.
    Zhang, Y., Springel, V., Yang, X.: Genus Statistics Using the Delaunay Tessellation Field Estimation Method. I. Tests with the Millennium Simulation and the SDSS DR7. Astrophys. J. 722, 812–824 (2010)CrossRefGoogle Scholar
  72. 72.
    Zomorodian, A.: Topology for Computing. Cambr. Mon. Appl. Comp. Math., Cambr. Univ. Press (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rien van de Weygaert
    • 1
  • Gert Vegter
    • 2
  • Herbert Edelsbrunner
    • 3
  • Bernard J. T. Jones
    • 1
  • Pratyush Pranav
    • 1
  • Changbom Park
    • 4
  • Wojciech A. Hellwing
    • 5
  • Bob Eldering
    • 2
  • Nico Kruithof
    • 2
  • E. G. P. (Patrick) Bos
    • 1
  • Johan Hidding
    • 1
  • Job Feldbrugge
    • 1
  • Eline ten Have
    • 6
  • Matti van Engelen
    • 2
  • Manuel Caroli
    • 7
  • Monique Teillaud
    • 7
  1. 1.Kapteyn Astronomical InstituteUniversity of GroningenGroningenThe Netherlands
  2. 2.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands
  3. 3.IST AustriaKlosterneuburgAustria
  4. 4.School of PhysicsKorea Institute for Advanced StudySeoulKorea
  5. 5.Interdisciplinary Centre for Mathematical and Computational ModelingUniversity of WarsawWarsawPoland
  6. 6.Stratingh Institute for ChemistryUniversity of GroningenGroningenThe Netherlands
  7. 7.Géométrica, INRIA Sophia Antipolis-MéditerranéeSophia Antipolis CedexFrance

Personalised recommendations