Ideal Secret Sharing Schemes with Share Selectability

  • Keita Emura
  • Atsuko Miyaji
  • Akito Nomura
  • Mohammad Shahriar Rahman
  • Masakazu Soshi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7043)


In this paper, we investigate a new concept, called share selectable secret sharing, where no unauthorized set can obtain information of the secret (in the information-theoretic sense) even if shares are selectable as arbitrary values which are independent of the secret. We propose two totally selectable (i.e., all users’ shares are selectable) secret sharing schemes with unanimous structure. We also propose a quasi-selectable (i.e., a part of each user’s share is selectable) secret sharing scheme with certain hierarchical structures which contains special cases of the hierarchical threshold structures introduced by Tamir Tassa in TCC2004 (or its full version (J. Cryptology2007)). If all selectable shares are randomly chosen, then our schemes are perfect. Finally, we discuss the effect of the leakage information of the secret if a weak secret is indicated as a selectable share.


Secret Sharing Access Structure Secret Sharing Scheme Threshold Secret Sharing Threshold Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdalla, M., Boyen, X., Chevalier, C., Pointcheval, D.: Distributed Public-key Cryptography from Weak Secrets. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 139–159. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N., Libert, B., de Panafieu, E.: Expressive Key-policy Attribute-based Encryption with Constant-size Ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Béguin, P., Cresti, A.: General Short Computational Secret Sharing Schemes. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 194–208. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Blakley, G.R., Meadows, C.: Security of Ramp Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  5. 5.
    Blundo, C., Cresti, A., De Santis, A., Vaccaro, U.: Fully dynamic secret sharing schemes. Theor. Comput. Sci. 165(2), 407–440 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Blundo, C., De Santis, A., Di Crescenzo, G., Gaggia, A.G., Vaccaro, U.: Multi-secret Sharing Schemes. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 150–163. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Boneh, D., Boyen, X., Halevi, S.: Chosen Ciphertext Secure Public Key Threshold Encryption without Random Oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Boyen, X., Chevalier, C., Fuchsbauer, G., Pointcheval, D.: Strong Cryptography from Weak Secrets. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 297–315. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Brickell, E.F.: Some Ideal Secret Sharing Schemes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  10. 10.
    Brickell, E.F., Stinson, D.R.: Some improved bounds on the information rate of perfect secret sharing schemes. J. Cryptology 5(3), 153–166 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cachin, C.: On-line secret sharing. In: IMA Conf., pp. 190–198 (1995)Google Scholar
  12. 12.
    Csirmaz, L.: The size of a share must be large. J. Cryptology 10(4), 223–231 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Csirmaz, L., Tardos, G.: On-line secret sharing. Cryptology ePrint Archive, Report 2011/174 (2011),
  14. 14.
    Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: STOC, pp. 601–610 (2009)Google Scholar
  16. 16.
    Gennaro, R.: Faster and Shorter Password-authenticated Key Exchange. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 589–606. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Gentry, C., MacKenzie, P.D., Ramzan, Z.: Password authenticated key exchange using hidden smooth subgroups. In: ACM Conference on Computer and Communications Security, pp. 299–309 (2005)Google Scholar
  18. 18.
    Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM Conference on Computer and Communications Security, pp. 89–98 (2006)Google Scholar
  20. 20.
    Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation: extended abstract. In: STOC, pp. 623–632 (2004)Google Scholar
  21. 21.
    Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing or: How to Cope with Perpetual Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)Google Scholar
  22. 22.
    Hwang, R.-J., Chang, C.-C.: An on-line secret sharing scheme for multi-secrets. Computer Communications 21(13), 1170–1176 (1998)CrossRefGoogle Scholar
  23. 23.
    Isshiki, T., Wada, K., Tanaka, K.: A rational secret-sharing scheme based on RSA-OAEP. IEICE Transactions 93-A(1), 42–49 (2010)CrossRefGoogle Scholar
  24. 24.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. In: Proceedings IEEE Globecom 1987, pp. 99–102 (1987)Google Scholar
  25. 25.
    Iwamoto, M., Yamamoto, H., Ogawa, H.: Optimal multiple assignments based on integer programming in secret sharing schemes with general access structures. IEICE Transactions 90-A(1), 101–112 (2007)CrossRefGoogle Scholar
  26. 26.
    Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-authenticated Key Exchange using Human-memorable Passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Kol, G., Naor, M.: Games for exchanging information. In: STOC, pp. 423–432 (2008)Google Scholar
  28. 28.
    Krawczyk, H.: Secret Sharing Made Short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  29. 29.
    Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast (k, L, n)-threshold ramp secret sharing scheme. IEICE Transactions 92-A(8), 1808–1821 (2009)CrossRefGoogle Scholar
  30. 30.
    MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated key exchange. J. Cryptology 19(1), 27–66 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Martí-Farré, J., Padró, C.: Secret sharing schemes on access structures with intersection number equal to one. Discrete Applied Mathematics 154(3), 552–563 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Micali, S., Shelat, A.: Purely Rational Secret Sharing (Extended Abstract). In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 54–71. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Nikov, V., Nikova, S.: On Proactive Secret Sharing Schemes. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 308–325. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  34. 34.
    Nishide, T., Yoneyama, K., Ohta, K.: Attribute-based encryption with partially hidden ciphertext policies. IEICE Transactions 92-A(1), 22–32 (2009)CrossRefGoogle Scholar
  35. 35.
    Oba, T., Ogata, W.: Provably secure on-line secret sharing scheme. IEICE Transactions 94-A(1), 139–149 (2011)CrossRefGoogle Scholar
  36. 36.
    Qin, B., Wu, Q., Zhang, L., Domingo-Ferrer, J.: Threshold Public-key Encryption with Adaptive Security and Short Ciphertexts. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 62–76. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  37. 37.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Shin, S., Kobara, K., Imai, H.: Security analysis of two augmented password-authenticated key exchange protocols. IEICE Transactions 93-A(11), 2092–2095 (2010)CrossRefGoogle Scholar
  39. 39.
    Stinson, D.R., Wei, R.: Unconditionally Secure Proactive Secret Sharing Scheme with Combinatorial Structures. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 200–214. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  40. 40.
    Sun, H.-M.: On-line multiple secret sharing based on a one-way function. Computer Communications 22(8), 745–748 (1999)CrossRefGoogle Scholar
  41. 41.
    Tassa, T.: Hierarchical Threshold Secret Sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  42. 42.
    Tassa, T.: Hierarchical threshold secret sharing. J. Cryptology 20(2), 237–264 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. J. Cryptology 22(2), 227–258 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Tochikubo, K.: Efficient secret sharing schemes realizing general access structures. IEICE Transactions 87-A(7), 1788–1797 (2004)Google Scholar
  45. 45.
    Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic Constructions for Chosen-ciphertext Secure Attribute Based Encryption. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  46. 46.
    Yoneyama, K.: Does secure password-based authenticated key exchange against leakage of internal states exist? IEICE Transactions 92-A(1), 113–121 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Keita Emura
    • 1
  • Atsuko Miyaji
    • 2
  • Akito Nomura
    • 3
  • Mohammad Shahriar Rahman
    • 2
  • Masakazu Soshi
    • 4
  1. 1.Center for Highly Dependable Embedded Systems TechnologyJapan Advanced Institute of Science and Technology (JAIST)Japan
  2. 2.School of Information ScienceJAISTJapan
  3. 3.Institute of Science and EngineeringKanazawa UniversityJapan
  4. 4.Graduate School of Information SciencesHiroshima City UniversityJapan

Personalised recommendations