Consensus with Constrained Convergence Rate and Time-Delays

  • Irinel-Constantin MorărescuEmail author
  • Silviu-Iulian Niculescu
  • Antoine Girard
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 423)


In this paper we discuss consensus problems for networks of dynamic agents with fixed and switching topologies in presence of delay in the communication channels. The study provides sufficient agreement conditions in terms of delay and the second largest eigenvalue of the Perron matrices defining the collective dynamics. We found an exact delay bound assuring the initial network topology preservation. We also present an analysis of the agreement speed when the asymptotic consensus is achieved. Some numerical examples complete the presentation.


Network Topology Multiagent System Convergence Speed Consensus Problem Dynamic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, N.: Convergence in multiagent coordination, consensus, and flocking. In: Proceedings of the 44th IEEE CDC, pp. 2996–3000 (2005)Google Scholar
  2. 2.
    Cortes, J., Bullo, F.: Coordination and geometric optimization via distributed dynamical systems. SIAM J. Control Optim. 44(5), 1543–1574 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fax, A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Automat. Contr. 49, 1465–1476 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Contr. 48(6), 988–1001 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, S., Wang, H.: Multi-agent coordination using nearest-neighbor rules: revisiting the Vicsek model. arXiv:cs/0407021 (2004)Google Scholar
  7. 7.
    Merris, R.: Laplacian Matrices of Graphs: A Survey. Linear Algebra and its Applications 197, 143–176 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Morărescu, I.-C., Girard, A.: Opinion dynamics with decaying confidence: application to community detection in graphs. IEEE Trans. Automat. Contr. (2009) (to appear, 2011)Google Scholar
  9. 9.
    Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Contr. 50(2), 169–182 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Contr. 49(9), 1520–1833 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Olfati-Saber, R., Murray, R.M.: Consensus protocol for networks of dynamic agents. In: Proc. of American Control Conference (2003)Google Scholar
  12. 12.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, O., Shochet, I.: Novel type of phase transition in a system of self-deriven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)CrossRefGoogle Scholar
  13. 13.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33(4), 452–473 (1977)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Irinel-Constantin Morărescu
    • 1
    Email author
  • Silviu-Iulian Niculescu
    • 2
  • Antoine Girard
    • 3
  1. 1.CRAN (UMR-CNRS 7039)Nancy-UniversitéVandoeuvre-lès-NancyFrance
  2. 2.L2S (UMR  CNRS 8506)CNRS-SupélecGif-sur-YvetteFrance
  3. 3.Jean Kuntzmann Laboratory, Tour IRMAJoseph Fourier UniversitySaint Martin d’HèresFrance

Personalised recommendations