Design of Terminal Cost Functionals and Terminal Regions for Model Predictive Control of Nonlinear Time-Delay Systems

Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 423)

Abstract

In this work, we present results on model predictive control (MPC) for nonlinear time-delay systems. MPC is one of the few control methods which can deal effectively with constrained nonlinear time-delay systems. In order to guarantee stability of the closed-loop, a local control Lyapunov functional in a region around the origin is in general utilized as terminal cost. It is well-known for delayfree systems that a control Lyapunov function calculated for the Jacobi linearization about the origin can also be used as a terminal cost for the nonlinear system for an appropriately chosen terminal region. However, the infinite-dimensional nature of time-delay systems circumvents a straight-forward extension of those schemes to time-delay systems. We present two schemes for calculating stabilizing design parameters based on the Jacobi linearization of the nonlinear time-delay system. The two schemes are based on different assumptions and yield different types of terminal regions. We compare the properties and discuss advantages and disadvantages of both schemes.

Keywords

Terminal Region Model Predictive Control Nonlinear Model Predictive Control Terminal Constraint Control Lyapunov Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10), 1205–1218 (1998)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Boston (2003)Google Scholar
  3. 3.
    Hu, B., Linnemann, A.: Toward infinite-horizon optimality in nonlinear model predictive control. IEEE Trans. Autom. Control 47(4), 679–682 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jankovic, M.: Control of nonlinear systems with time-delay. In: Proc. 42nd IEEE Conf. Decision Contr., Maui, HI, USA, pp. 4545–4550 (2003)Google Scholar
  5. 5.
    Kharitonov, V.L., Zhabko, A.P.: Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica 39(1), 15–20 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht (1999)MATHGoogle Scholar
  7. 7.
    Kwon, W.H., Lee, Y.S., Han, S.H.: Receding horizon predictive control for non-linear time-delay systems. In: International Conference on Control, Automation and Systems, Cheju National Univ. Jeju, Korea, pp. 107–111 (2001)Google Scholar
  8. 8.
    Kwon, W.H., Lee, Y.S., Han, S.H.: Receding horizon predictive control for nonlinear time-delay systems with and without input constraints. In: Proc. 6th IFAC Symposium on Dynamics and Control of Process Systems (DYCOPS-6), Jejudo Island, Korea, pp. 277–282 (2001)Google Scholar
  9. 9.
    Limon, D., Alamo, T., Salas, F., Camacho, E.F.: On the stability of constrained MPC without terminal constraint. IEEE Trans. Autom. Control 51(5), 832–836 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mahboobi Esfanjani, R., Nikravesh, S.K.Y.: Stabilising predictive control of non-linear time-delay systems using control Lyapunov-Krasovskii functionals. IET Control Theory & Applications 3(10), 1395–1400 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mahboobi Esfanjani, R., Reble, M., Münz, U., Nikravesh, S.K.Y., Allgöwer, F.: Model predictive control of constrained nonlinear time-delay systems. In: Proc. 48th IEEE Conf. Decision Contr. and 28th Chin. Contr. Conf., Shanghai, China, pp. 1324–1329 (2009)Google Scholar
  12. 12.
    Márquez-Martínez, L.A., Moog, C.H.: Input-output feedback linearization of time-delay systems. IEEE Trans. Autom. Control 49(5), 781–785 (2004)CrossRefGoogle Scholar
  13. 13.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 26(6), 789–814 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mazenc, F., Bliman, P.A.: Backstepping design for time-delay nonlinear systems. IEEE Trans. Autom. Control 51(1), 149–154 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Melchor-Aguilar, D., Niculescu, S.I.: Estimates of the attraction region for a class of nonlinear time-delay systems. IMA Journal of Mathematical Control and Information 24, 523–550 (2007)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Raff, T., Angrick, C., Findeisen, R., Kim, J.S., Allgöwer, F.: Model predictive control for nonlinear time-delay systems. In: Proc. 7th IFAC Symposium on Nonlinear Systems, Pretoria, South Africa (2007)Google Scholar
  17. 17.
    Raff, T., Huber, S., Nagy, Z.K., Allgöwer, F.: Nonlinear model predictive control of a four tank system: An experimental stability study. In: Proc. IEEE Conf. Control Applications, Munich, Germany, pp. 237–242 (2006)Google Scholar
  18. 18.
    Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)Google Scholar
  19. 19.
    Reble, M., Allgöwer, F.: General design parameters of model predictive control for nonlinear time-delay systems. In: Proc. 49th IEEE Conf. Decision Contr., Atlanta, GA, USA, pp. 176–181 (2010)Google Scholar
  20. 20.
    Reble, M., Allgöwer, F.: Stabilizing design parameters for model predictive control of constrained nonlinear time-delay systems. In: Proc. IFAC Workshop on Time-Delay Systems, Czech Republic, Prague (2010)Google Scholar
  21. 21.
    Reble, M., Brunner, F., Allgöwer, F.: Model predictive control for nonlinear time-delay systems without terminal constraint. Accepted for publication at IFAC World Congress (2011)Google Scholar
  22. 22.
    Reble, M., Mahboobi Esfanjani, R., Nikravesh, S.K.Y., Allgöwer, F.: Model predictive control of constrained nonlinear time-delay systems. IMA Journal of Mathematical Control and Information (2010), doi:10.1093/imamci/dnq029Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Systems Theory and Automatic ControlUniversity of StuttgartStuttgartGermany

Personalised recommendations