Threshold Discernible Ring Signatures

  • Swarun Kumar
  • Shivank Agrawal
  • Ramarathnam Venkatesan
  • Satyanarayana V. Lokam
  • C. Pandu Rangan
Part of the Communications in Computer and Information Science book series (CCIS, volume 222)

Abstract

A ring signature [1] demonstrates that the signer who produced it is among a group A of n people, called a ring. A signer may produce a ring signature on any ring A he is part of, arbitrarily without any setup procedure or the consent of anyone in A. Several extensions of ring signatures have been proposed in literature. Step out ring signatures introduced in [2] address the issue of a ring member proving that she is not the original signer of a message, in case of dispute. First we show that the scheme in [2] has several flaws and design a correct scheme and prove formally the security of the same. Then we use the basic constructs of our scheme to design a protocol for a new problem, which we refer to as threshold discernible ring signatures. In threshold discernible ring signatures, a group B of t members can co-operate to identify the original signer of a ring signature that involved a group A of n alleged signers, where B ⊆ A and n ≥ t. This is the first time that this problem is considered in the literature. We formally prove the security of our scheme in the random oracle model and propose various extensions.

Keywords

Encryption Scheme Original Signer Ring Signature Discrete Logarithm Discrete Logarithm Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Klonowski, M., Krzywiecki, Ł., Kutyłowski, M., Lauks, A.: Step-Out Ring Signatures. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 431–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Naor, M.: Deniable Ring Authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Susilo, W., Mu, Y.: Deniable Ring Authentication Revisited. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 149–163. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Tsang, P.P., Wei, V.K.: Short Linkable Ring Signatures for E-Voting, E-Cash and Attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short Linkable Ring Signatures Revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 101–115. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cheng, W., Lang, W., Yang, Z., Liu, G., Tan, Y.: An identity-based proxy ring signature scheme from bilinear pairings. In: ISCC 2004: Proceedings of the Ninth International Symposium on Computers and Communications, vol. 2, pp. 424–429. IEEE Computer Society (2004)Google Scholar
  8. 8.
    Awasthi, A.K., Lal, S.: Id-based ring signature and proxy ring signature schemes from bilinear pairings. CoRR (2005)Google Scholar
  9. 9.
    Savola, R.: A requirement Centric Framework for Information Security Evaluation. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 48–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Chen, Y.S., Lei, C.L., Chiu, Y.P., Huang, C.Y.: Confessible threshold ring signatures. In: ICSNC 2006: Proceedings of the International Conference on Systems and Networks Communication, p. 25. IEEE Computer Society (2006)Google Scholar
  11. 11.
    Camenisch, J.: Efficient and Generalized Group Signatures. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology, 161–174 (1991)Google Scholar
  13. 13.
    Catalano, D., Cramer, R., Crescenzo, G., Darmgård, I., Pointcheval, D., Takagi, T., Pointcheval, D.: Provable security for public key schemes. In: Casacuberta, C. (ed.) Contemporary Cryptology, CRM Barcelona. Advanced Courses in Mathematics, pp. 133–190. Birkhäuser, Basel (2005)CrossRefGoogle Scholar
  14. 14.
    Stadler, M.: Publicly Verifiable Secret Sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Camenisch, J., Damgård, I.: Verifiable Encryption, Group Encryption, and Their Applications to Separable Group Signatures and Signature Sharing Schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Bao, F.: An efficient verifiable encryption scheme for encryption of discrete logarithms. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 213–220. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Klonowski, M., Krzywiecki, L., Kutyowski, M., Lauks, A.: Step-out group signatures. Computing 85, 137–151 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Swarun Kumar
    • 1
  • Shivank Agrawal
    • 1
  • Ramarathnam Venkatesan
    • 2
  • Satyanarayana V. Lokam
    • 2
  • C. Pandu Rangan
    • 1
  1. 1.Indian Institute of Technology MadrasChennaiIndia
  2. 2.Microsoft ResearchBangaloreIndia

Personalised recommendations