Classification of User Postures with Capacitive Proximity Sensors in AAL-Environments

  • Tobias Alexander Große-Puppendahl
  • Alexander Marinc
  • Andreas Braun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7040)

Abstract

In Ambient Assisted Living (AAL), the context-dependent adaption of a system to a person’s needs is of particular interest. In the living area, a fine-grained context may not only contain information about the occupancy of certain furniture, but also the posture of a user on the occupied furniture. This information is useful in the application area of home automation, where, for example, a lying user may effect a different system reaction than a sitting user. In this paper, we present an approach for determining contextual information from furniture, using capacitive proximity sensors. Moreover, we evaluate the performance of Naïve Bayes classifiers, decision trees and radial basis function networks, regarding the classification of user postures. Therefore, we use our generic classification framework to visualize, train and evaluate postures with up to two persons on a couch. Based on a data set collected from multiple users, we show that this approach is robust and suitable for real-time classification.

Keywords

AAL capacitive proximity sensors classification user context 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amoretti, M., Wientapper, F., Furfari, F., Lenzi, S., Chessa, S.: Sensor data fusion for activity monitoring in ambient assisted living environments. In: International Conference on Wireless Sensor Network (WSN) Systems and Software 2009, pp. 206–221 (2009)Google Scholar
  2. 2.
    Baxter, L.K.: Capacitive Sensors: Design and Applications. IEEE Press (1996)Google Scholar
  3. 3.
    Beetz, M., Buss, M., Wollherr, D.: Cognitive Technical Systems — What is the Role of Artificial Intelligence? In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 19–42. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Beetz, M., Jan, B., Kirsch, R., Maldonado, A., Müller, A., Rusu, R.B.: The assistive kitchen a demonstration scenario for cognitive technical systems. In: Proceedings of the 4th COE Workshop on Human Adaptive Mechatronics (2007)Google Scholar
  5. 5.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc. (2006)Google Scholar
  6. 6.
    Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press (2003)Google Scholar
  7. 7.
    Hamisu, P., Braun, A.: Analyse des schlafverhaltens durch kapazitive sensorarrays zur ermittlung der wirbelsäulenbelastung. In: Proceedings of the Conference of Ambient Assisted Living 2010. VDE Verlag GmbH (2010)Google Scholar
  8. 8.
    Kivikunnas, S., Strömmer, E., Korkalainen, M., Heikkilä, T., Haverinen, M.: Intelligent furniture and their ubiquitous use scenarios. In: Proceedings of the AALIANCE Conference (2010)Google Scholar
  9. 9.
    Kotsiantis, S.B.: Supervised machine learning: A review of classification techniques. In: Proceeding of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, pp. 3–24. IOS Press (2007)Google Scholar
  10. 10.
    Mitchell, T.M.: Machine learning and data mining. Commun. ACM, 30–36 (1999)Google Scholar
  11. 11.
    Niemann, H.: Klassifikation von Mustern. Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung (2003)Google Scholar
  12. 12.
    Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM Indoor Localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Steinhage, A., Lauterbach, C.: Sensfloor(r): Ein aal sensorsystem für sicherheit, homecare und komfort. In: Proceedings of the Ambient Assisted Living Congress 2008 (2008)Google Scholar
  14. 14.
    University of Waikato: Weka machine learning project (May 2011), http://www.cs.waikato.ac.nz/ml/weka
  15. 15.
    Wren, C.R., Sparacino, F., Azarbayejani, A.J., Darrell, T.J., Starner, T.E., Kotani, A., Chao, C.M., Hlavac, M., Pentland, A.P.: Perceptive spaces for performance and entertainment: Untethered interaction using computer vision and audition. Applied Artificial Intelligence, 267–284 (1997)Google Scholar
  16. 16.
    Zimmerman, T.G., Smith, J.R., Paradiso, J.A., Allport, D., Gershenfeld, N.: Applying electric field sensing to human-computer interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1995, pp. 280–287 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tobias Alexander Große-Puppendahl
    • 1
    • 2
  • Alexander Marinc
    • 1
    • 2
  • Andreas Braun
    • 1
    • 2
  1. 1.TU DarmstadtDarmstadtGermany
  2. 2.Fraunhofer IGDDarmstadtGermany

Personalised recommendations