Towards Restricting Plaintext Space in Public Key Encryption

  • Yusuke Sakai
  • Keita Emura
  • Goichiro Hanaoka
  • Yutaka Kawai
  • Kazumasa Omote
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7038)

Abstract

This paper investigates methods that allow a third-party authority to control contents transmitted using a public key infrastructure. Since public key encryption schemes are normally designed not to leak even partial information of plaintext, traditional public key encryption schemes do not allow such controlling by an authority. In the proposed schemes, an authority specifies some set of forbidden messages, and anyone can detect a ciphertext that encrypts one of the forbidden messages. The syntax of public key encryption with such a functionality (restrictive public key encryption), formal definitions of security requirement for restrictive public key encryption schemes, and an efficient construction of restrictive public key encryption are given.

In principle, restrictive public key encryption schemes can be constructed by adding an NIZK proof that proves whether the encrypted messages are not prohibited. However if one uses the general NIZK technique to construct such a non-interactive proof, the scheme becomes extremely inefficient. In order to avoid such an inefficient construction, the construction given in this paper uses techniques of Teranishi et al., Boudot, and Nakanishi et al.

One of the possible applications of restrictive public key encryption is protecting a public key infrastructure from abuse by terrorists by disallowing encryption of crime-related keywords. Another example is to perform format-check of a ballot in an electronic voting, by disallowing encryption of irregular format voting.

Keywords

Signature Scheme Message Space Challenge Ciphertext Decryption Oracle Bilinear Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)CrossRefMATHGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI and Uni. of Amsterdam (November 1996)Google Scholar
  10. 10.
    Damgård, I.: On Σ-protocol. Cryptologic Protocol Theory, CPT 2010, v.2 (2010), http://www.daimi.au.dk/~ivan/Sigma.pdf
  11. 11.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  12. 12.
    Fuchsbauer, G., Pointcheval, D.: Proofs on encrypted values in bilinear groups and an application to anonymity of signatures. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 132–149. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. IEICE Transactions 89-A(5), 1328–1338 (2006)CrossRefGoogle Scholar
  14. 14.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)CrossRefMATHGoogle Scholar
  15. 15.
    Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes with constant costs for signing and verifying. IEICE Transactions 93-A(1), 50–62 (2010)CrossRefMATHGoogle Scholar
  16. 16.
    Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Tate, S.R., Vishwanathan, R.: Improving cut-and-choose in verifiable encryption and fair exchange protocols using trusted computing technology. In: DBSec, pp. 252–267 (2009)Google Scholar
  18. 18.
    Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication. IEICE Transactions 92-A(1), 147–165 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yusuke Sakai
    • 1
  • Keita Emura
    • 2
  • Goichiro Hanaoka
    • 3
  • Yutaka Kawai
    • 4
  • Kazumasa Omote
    • 2
  1. 1.The University of Electro-CommunicationsJapan
  2. 2.Japan Advanced Institute of Science and TechnologyJapan
  3. 3.National Institute of Advanced Industrial Science and TechnologyJapan
  4. 4.The University of TokyoJapan

Personalised recommendations