Local Nanoscopic Heterogeneities in Thermoresponsive Dendronized Polymers

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The thermal transition of thermoresponsive dendronized polymers is characterized on a molecular scale by continuous wave EPR spectroscopy. It is found to be accompanied by dynamic structural heterogeneities on the nanoscale, which trigger the aggregation of single polymer chains into mesoglobules. While macroscopically a sharp phase transition, this study reveals that the dehydration of the polymer chains proceeds over a temperature interval of at least 30 K and is a case of a molecularly controlled non-equilibrium state. While the aggregation temperature mainly depends on the periphery of the dendrons, the dehydration of the mesoglobule is governed by the hydrophobicity of the dendritic core. Heating rate dependent changes were assigned to the formation of a dense polymeric layer at the periphery of the mesoglobule, which prohibits the release of incorporated water.

Keywords

Critical Temperature Lower Critical Solution Temperature Hydrophobic Region Hyperfine Coupling Spin Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schild HG (1992) Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  2. 2.
    de las Heras Alarcón C, Pennadam S, Alexander C (2005) Chem Soc Rev 34:276–285CrossRefGoogle Scholar
  3. 3.
    Yerushalmi R, Scherz A, van der Boom ME, Kraatz H-B (2005) J Mater Chem 15:4480–4487CrossRefGoogle Scholar
  4. 4.
    Jia Z, Chen H, Zhu X, Yan D (2006) J Am Chem Soc 128:8144–8145CrossRefGoogle Scholar
  5. 5.
    Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Prog Polym Sci 32:1205–1237CrossRefGoogle Scholar
  6. 6.
    Chen H, Jia Z, Yan D, Zhu X (2007) Macromol Chem Phys 208:1637–1645CrossRefGoogle Scholar
  7. 7.
    Helms B, Fréchet JMJ (2006) Adv Synth Catal 348:1125–1148CrossRefGoogle Scholar
  8. 8.
    Wu C, Zhou SQ (1995) Macromolecules 28:5388–5390CrossRefGoogle Scholar
  9. 9.
    Wu C, Zhou SQ (1995) Macromolecules 28:8381–8387CrossRefGoogle Scholar
  10. 10.
    Wu C, Zhou SQ (1996) Phys Rev Lett 77:3053–3055CrossRefGoogle Scholar
  11. 11.
    Wang X, Qiu X, Wu C (1998) Macromolecules 31:2972–2976CrossRefGoogle Scholar
  12. 12.
    Van Durme K, Verbrugghe S, Du Prez FE, Van Mele B (2004) Macromolecules 37:1054–1061CrossRefGoogle Scholar
  13. 13.
    Luo S, Xu J, Zhu Z, Wu C, Liu S (2006) J Phys Chem B 110:9132–9139CrossRefGoogle Scholar
  14. 14.
    Ono Y, Shikata T (2006) J Am Chem Soc 128:10030–10031CrossRefGoogle Scholar
  15. 15.
    Cheng H, Shen L, Wu C (2006) Macromolecules 39:2325–2329CrossRefGoogle Scholar
  16. 16.
    Van Durme K, Van Assche G, Aseyev V, Raula J, Tenhu H, Van Mele B (2007) Macromolecules 40:3765–3772CrossRefGoogle Scholar
  17. 17.
    Ono Y, Shikata T (2007) J Phys Chem B 111:1511–1513CrossRefGoogle Scholar
  18. 18.
    Keerl M, Smirnovas V, Winter R, Richtering W (2008) Angew Chem Int Ed 47:338–341CrossRefGoogle Scholar
  19. 19.
    Schlüter AD, Rabe JP (2000) Angew Chem Int Ed 39:864–883CrossRefGoogle Scholar
  20. 20.
    Zhang A, Shu L, Bo Z, Schlüter AD (2003) Macromol Chem Phys 204:328–339CrossRefGoogle Scholar
  21. 21.
    Schlüter AD (2005) Top Curr Chem 245:151–191Google Scholar
  22. 22.
    Frauenrath H (2005) Prog Polym Sci 30:325–384CrossRefGoogle Scholar
  23. 23.
    Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Chem Rev 109:6275–6540CrossRefGoogle Scholar
  24. 24.
    Li W, Zhang A, Feldman K, Walde P, Schlüter AD (2008) Macromolecules 41:3659–3667CrossRefGoogle Scholar
  25. 25.
    Li W, Zhang A, Schlüter AD (2008) Chem Commun 5523–5525Google Scholar
  26. 26.
    Li W, Wu D, Schlüter AD, Zhang A (2009) J Polym. Sci, Part A: Polym Chem 47:6630–6640CrossRefGoogle Scholar
  27. 27.
    Dormidontova EE (2004) Macromolecules 37:7747–7761CrossRefGoogle Scholar
  28. 28.
    Ober CK, Cheng SZD, Hammond PT, Muthukumar M, Reichmanis E, Wooley KL, Lodge TP (2009) Macromolecules 42:465–471CrossRefGoogle Scholar
  29. 29.
    Cady F, Qian H (2009) Phys Biol 6:036011CrossRefGoogle Scholar
  30. 30.
    Brutlag D, Kornberg A (1972) J Biol Chem 247:241–248Google Scholar
  31. 31.
    Drobny GP, Long JR, Karlsson T, Shaw W, Popham J, Oyler N, Bower P, Stringer J, Gregory D, Mehta M, Stayton PS (2003) Annu Rev Phys Chem 54:531–571CrossRefGoogle Scholar
  32. 32.
    Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, LondonGoogle Scholar
  33. 33.
    Saalwächter K (2007) Prog Nucl Magn Reson Spectrosc 51:1–35CrossRefGoogle Scholar
  34. 34.
    Schlick S (ed) (2006) Advanced ESR methods in polymer rsearch. Wiley-Interscience, HobokenGoogle Scholar
  35. 35.
    Schmidt-Rohr K, Spiess HW (1991) Phys Rev Lett 66:3020–3023CrossRefGoogle Scholar
  36. 36.
    Heuer A, Wilhelm M, Zimmermann H, Spiess HW (1995) Phys Rev Lett 75:2851–2854CrossRefGoogle Scholar
  37. 37.
    Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998) Phys Rev Lett 81:2727–2730CrossRefGoogle Scholar
  38. 38.
    Hansen MR, Schnitzler T, Pisula W, Graf R, Müllen K, Spiess HW (2009) Angew Chem Int Ed 48:4621–4624CrossRefGoogle Scholar
  39. 39.
    Ruthstein S, Raitsimring AM, Bitton R, Frydman V, Godt A, Goldfarb D (2009) Phys Chem Chem Phys 11:148–160CrossRefGoogle Scholar
  40. 40.
    Hinderberger D, Spiess HW, Jeschke G (2010) Appl Magn Reson 37:657–683CrossRefGoogle Scholar
  41. 41.
    Dockter C, Volkov A, Bauer C, Polyhach Y, Joly-Lopez Z, Jeschke G, Paulsen H (2009) Proc Natl Acad Sci USA 106:18485–18490CrossRefGoogle Scholar
  42. 42.
    Hinderberger D, Schmelz O, Rehahn M, Jeschke G (2004) Angew Chem Int Ed 43:4616–4621CrossRefGoogle Scholar
  43. 43.
    Owenius R, Engstrom M, Lindgren M, Huber M (2001) J Phys Chem A 105:10967–10977CrossRefGoogle Scholar
  44. 44.
    Junk MJN, Jonas U, Hinderberger D (2008) Small 4:1485–1493CrossRefGoogle Scholar
  45. 45.
    Knauer BR, Napier JJ (1976) J Am Chem Soc 98:4395–4400CrossRefGoogle Scholar
  46. 46.
    Kovarskii AL, Wasserman AM, Buchachenko AL (1972) J Magn Reson 7:225–237CrossRefGoogle Scholar
  47. 47.
    Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood, New YorkGoogle Scholar
  48. 48.
    Derkaoui N, Said S, Grohens Y, Olier R, Privat M (2007) J Colloid Interface Sci 305:330–338CrossRefGoogle Scholar
  49. 49.
    Chaikin PM, Lubensky TC (1995) Principles of condensed matter physics. Cambridge University Press, CambridgeGoogle Scholar
  50. 50.
    Note that at the chosen polymer and spin probe concentrations ~30% of the spin probes reside in hydrophilic regions even at high temperatures. Therefore, the potential percolation point at yA ~ 0.5 appears when (0.5/0.7 ≈ 0.7) 70% of all probes taking part in the transition are trapped in hydrophobic regions.Google Scholar
  51. 51.
    Shibayama M, Takata S, Norisuye T (1998) Phys A 249:245–252CrossRefGoogle Scholar
  52. 52.
    Shibayama M (1998) Macromol Chem Phys 199:1–30CrossRefGoogle Scholar
  53. 53.
    Wu C, Li W, Zhu XX (2004) Macromolecules 37:4989–4992CrossRefGoogle Scholar
  54. 54.
    Bolisetty S, Schneider C, Polzer F, Ballauff M, Li W, Zhang A, Schlüter AD (2009) Macromolecules 42:7122–7128CrossRefGoogle Scholar
  55. 55.
    Aseyev V, Hietala S, Laukkanen A, Nuopponen M, Confortini O, Du Prez FE, Tenhu H (2005) Polymer 46:7118–7131CrossRefGoogle Scholar
  56. 56.
    Gorelov AV, Du Chesne A, Dawson KA (1997) Physica A 240:443–452CrossRefGoogle Scholar
  57. 57.
    Kujawa P, Aseyev V, Tenhu H, Winnik FM (2006) Macromolecules 39:7686–7693CrossRefGoogle Scholar
  58. 58.
    Li W, Zhang A, Chen Y, Feldman K, Wu H, Schlüter AD (2008) Chem Commun 5948–5950Google Scholar
  59. 59.
    Chan K, Pelton R, Zhang J (1999) Langmuir 15:4018–4020CrossRefGoogle Scholar
  60. 60.
    Balu C, Delsanti M, Guenoun P, Monti F, Cloitre M (2007) Langmuir 23:2404–2407CrossRefGoogle Scholar
  61. 61.
    Vasilevskaya VV, Khalatur PG, Khokhlov AR (2003) Macromolecules 36:10103–10111CrossRefGoogle Scholar
  62. 62.
    Baulin VA, Zhulina EB, Halperin A (2003) J Chem Phys 119:10977–10988CrossRefGoogle Scholar
  63. 63.
    Picarra S, Martinho JMG (2001) Macromolecules 34:53–58CrossRefGoogle Scholar
  64. 64.
    Dawson KA, Gorelov AV, Timoshenko EG, Kuznetsov YA, Du Chesne A (1997) Physica A 244:68–80CrossRefGoogle Scholar
  65. 65.
    Matsuo ES, Tanaka T (1988) J Chem Phys 89:1695–1703CrossRefGoogle Scholar
  66. 66.
    Yu H, Grainger DW (1993) J Appl Polym Sci 49:1553–1563CrossRefGoogle Scholar
  67. 67.
    Burchard W (1983) Adv Polym Sci 48:1–124CrossRefGoogle Scholar
  68. 68.
    Maeda Y, Higuchi T, Ikeda I (2000) Langmuir 16:7503–7509CrossRefGoogle Scholar
  69. 69.
    Maeda Y, Higuchi T, Ikeda I (2001) Langmuir 17:7535–7539CrossRefGoogle Scholar
  70. 70.
    Maeda Y, Nakamura T, Ikeda I (2001) Macromolecules 34:1391–1399CrossRefGoogle Scholar
  71. 71.
    Li W (2010) Novel dendritic macromolecules with water-soluble. Thermoresponsive and amphiphilic properties, Doctoral Dissertation, ETH ZürichGoogle Scholar
  72. 72.
    Stoll S, Schweiger A (2006) J Magn Reson 178:42–55CrossRefGoogle Scholar
  73. 73.
    Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D (2010) Angew Chem 122:5818–5823CrossRefGoogle Scholar
  74. 74.
    Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D (2010) Angew Chem Int Ed 49:5683–5687CrossRefGoogle Scholar
  75. 75.
    Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D (2011) Macromol Chem Phys 212:1229–1235CrossRefGoogle Scholar
  76. 76.
    Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D (2011) J Am Chem Soc 133:10832–10838CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations