Electron Paramagnetic Resonance Theory

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In 1921, Gerlach and Stern observed that a beam of silver atoms splits into two lines when it is subjected to a magnetic field. While the line splitting in optical spectra, first found by Zeeman in 1896, could be explained by the angular momentum of the electrons, the s-electron of silver could not be subject to such a momentum, not to mention that an azimuthal quantum number l = 1/2 cannot be explained by classical physics. At that time, quantum mechanics was still an emerging field in physics and it took another three years until this anormal Zeeman effect was correctly interpreted by the joint research of Uhlenbeck, a classical physicist, and Goudsmit, a fellow of Paul Ehrenfest. They postulated a so-called ‘spin’, a quantized angular momentum, as an intrinsic property of the electron. This research marks the cornerstone of electron paramagnetic resonance (EPR) spectroscopy which is based on the transitions between quantized states of the resulting magnetic moment.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Hyperfine Coupling Spin Probe Electron Spin Echo Envelope Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gerlach W, Stern O (1921) Z Phys 8:110–111Google Scholar
  2. 2.
    Gerlach W, Stern O (1922) Z Phys 9:349–352CrossRefGoogle Scholar
  3. 3.
    Gerlach W, Stern O (1922) Z Phys 9:353–355CrossRefGoogle Scholar
  4. 4.
    Zeeman P (1897) Philos Mag 43:226Google Scholar
  5. 5.
    Zeeman P (1897) Nature 55:347CrossRefGoogle Scholar
  6. 6.
    Uhlenbeck GE, Goudsmit S (1925) Naturwissenschaften 13:953–954CrossRefGoogle Scholar
  7. 7.
    Uhlenbeck GE, Goudsmit S (1926) Nature 117:264–265CrossRefGoogle Scholar
  8. 8.
    Zavoisky E (1945) J Phys USSR 9:211Google Scholar
  9. 9.
    Zavoisky E (1945) J Phys USSR 9:245Google Scholar
  10. 10.
    Purcell EM, Torrey HC, Pound RV (1946) Phys Rev 69:37–38CrossRefGoogle Scholar
  11. 11.
    Bloch F, Hansen WW, Packard M (1946) Phys Rev 69:127CrossRefGoogle Scholar
  12. 12.
    Ernst RR, Anderson WA (1966) Rev Sci Instrum 37:93–102CrossRefGoogle Scholar
  13. 13.
    Blume RJ (1958) Phys Rev 109:1867–1873CrossRefGoogle Scholar
  14. 14.
    Holczer K, Schmalbein D (1987) Bruker Rep 1:22Google Scholar
  15. 15.
    Höfer P, Maresch GG, Schmalbein D, Holczer K (1996) Bruker Rep 142:15Google Scholar
  16. 16.
    Likhtenshtein GI, Yamauchi J, Nakatsuji S, Smirnov AI, Tamura R (2008) Nitroxides—applications in chemistry, biomedicine and materials science. Wiley-VCH, WeinheimGoogle Scholar
  17. 17.
    Jeschke G (2006) Site-specific information on macromolecular materials by combining CW and pulsed ESR on spin probes. In: Schlick S (ed) Advanced ESR methods in polymer research. Wiley, New YorkGoogle Scholar
  18. 18.
    Hinderberger D, Jeschke G (2006) Site-specific characterization of structure and dynamics of complex materials by EPR spin probes. In: Webb GA (ed) Modern magnetic resonance. Springer, LondonGoogle Scholar
  19. 19.
    Jeschke G, Pannier M, Spiess HW (2000) Double electron–electron resonance. In: Berliner LJ, Eaton GR, Eaton SS (eds) Biological magnetic resonance, vol 19: distance measurements in biological systems by EPR. Kluwer Academic, New YorkGoogle Scholar
  20. 20.
    Jeschke G (2002) Chem Phys Chem 3:927–932CrossRefGoogle Scholar
  21. 21.
    Borbat PP, Freed JH (2000) Double-quantum ESR and distance measurements. In: Berliner LJ, Eaton GR, Eaton SS (eds) Biological magnetic resonance, vol 19: distance measurements in biological systems by EPR. Kluwer Academic, New YorkGoogle Scholar
  22. 22.
    Jeschke G (2002) Macromol Rapid Commun 23:227–246CrossRefGoogle Scholar
  23. 23.
    Schiemann O, Prisner TF (2007) Q Rev Biophys 40:1–53CrossRefGoogle Scholar
  24. 24.
    Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH (2001) Science 291:266–269CrossRefGoogle Scholar
  25. 25.
    Jeschke G, Polyhach Y (2007) Phys Chem Chem Phys 9:1895–1910CrossRefGoogle Scholar
  26. 26.
    Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, LondonGoogle Scholar
  27. 27.
    Dockter C, Volkov A, Bauer C, Polyhach Y, Joly-Lopez Z, Jeschke G, Paulsen H (2009) Proc Nat Acad Sci U S A 106:18485–18490CrossRefGoogle Scholar
  28. 28.
    Hinderberger D, Spiess HW, Jeschke G (2010) Appl Magn Reson 37:657–683CrossRefGoogle Scholar
  29. 29.
    Odom B, Hanneke D, D’Urso B, Gabrielse G (2006) Phys Rev Lett 97:030801CrossRefGoogle Scholar
  30. 30.
    Bloch F (1946) Phys Rev 70:460–474CrossRefGoogle Scholar
  31. 31.
    Abragam A, Pryce MHL (1951) Proc R Soc A: Math Phys Sci 205:135–153CrossRefGoogle Scholar
  32. 32.
    Solomon EI, Hodgson KO (1998) Spectroscopic methods in bioinorganic chemistry. Clarendon, OxfordCrossRefGoogle Scholar
  33. 33.
    McGarvey BR (1967) J Phys Chem 71:51–66CrossRefGoogle Scholar
  34. 34.
    Molin YN, Salikhov KM, Zamaraev KI (1980) Spin exchange–principles and applications in chemistry and biology. Springer Verlag, BerlinGoogle Scholar
  35. 35.
    McConnell HM (1958) J Chem Phys 28:430–431CrossRefGoogle Scholar
  36. 36.
    Hubbell WL, Cafiso DS, Altenbach C (2000) Nat Struct Biol 7:735–739CrossRefGoogle Scholar
  37. 37.
    Kocherginsky N, Swartz HM (1995) Nitroxide spin labels - reactions in biology and chemistry. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Fajer PG, Brown L, Song L (2007) Practical pulsed dipolar ESR (DEER). In: Hemminga MA, Berliner LJ (eds) Biological magnetic resonance, vol 27: ESR spectroscopy in membrane biophysics. Springer, New YorkGoogle Scholar
  39. 39.
    D. Hinderberger (2004) Polyelectrolytes and their counterions studied by EPR spectroscopy, Doctoral Dissertation, Johannes Gutenberg-Universität, Mainz, Google Scholar
  40. 40.
    Beth AH, Robinson BH (1989) Nitrogen-15 and deuterium substituted spin labels for studies of very slow rotational motion. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 8: Spin labeling—theory and applications. Plenum Press, New YorkGoogle Scholar
  41. 41.
    Edmonds AR (1960) Angular momentum in quantum mechanics. Princeton University Press, PrincetonGoogle Scholar
  42. 42.
    Jeschke G, Schlick S (2006) Continuous-wave and pulsed ESR methods. In: Schlick S (ed) Advanced ESR methods in polymer research. Wiley, HobokenGoogle Scholar
  43. 43.
    Kivelson D (1960) J Chem Phys 33:1094–1106CrossRefGoogle Scholar
  44. 44.
    Freed JH, Fraenkel GK (1963) J Chem Phys 39:326–348CrossRefGoogle Scholar
  45. 45.
    Schneider DJ, Freed JH (1989) Continuous-wave and pulsed ESR methods. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 8: spin labeling–theory and applications. Plenum Press, New YorkGoogle Scholar
  46. 46.
    Meirovitch E, Freed JH (1984) J Phys Chem 88:4995–5004CrossRefGoogle Scholar
  47. 47.
    Polimeno A, Freed JH (1995) J Phys Chem 99:10995–11006CrossRefGoogle Scholar
  48. 48.
    Wegener C, Savitsky A, Pfeiffer M, Möbius K, Steinhoff HJ (2001) Appl Magn Reson 21:441–452CrossRefGoogle Scholar
  49. 49.
    Bordignon E, Steinhoff HJ (2007) Membrane protein structure and dynamics studied by site-directed spin-labeling ESR. In: Hemminga MA, Berliner LJ (eds) Biological magnetic resonance, vol 27: ESR spectroscopy in membrane biophysics. Springer, New YorkGoogle Scholar
  50. 50.
    Stoll S, Schweiger A (2006) J Magn Reson 178:42–55CrossRefGoogle Scholar
  51. 51.
    Stoll S, Schweiger A (2007) Easy spin: simulating cw ESR spectra. In: Hemminga MA, Berliner LJ (eds) Biological magnetic resonance, vol. 27: ESR spectroscopy in membrane biophysics. Springer, New YorkGoogle Scholar
  52. 52.
    Weil JA (1971) J Magn Reson 4:394–399CrossRefGoogle Scholar
  53. 53.
    Goldman SA, Bruno GV, Polnaszek CF, Freed JH (1972) J Chem Phys 56:716–735CrossRefGoogle Scholar
  54. 54.
    Hwang JS, Mason RP, Hwang LP, Freed JH (1975) J Phys Chem 79:489–511CrossRefGoogle Scholar
  55. 55.
    Stoll S, Schweiger A (2003) Chem Phys Lett 380:464–470CrossRefGoogle Scholar
  56. 56.
    Sørensen OW, Eich GW, Levitt MH, Bodenhausen G, Ernst RR (1983) Prog Nucl Magn Reson Spectrosc 16:163–192CrossRefGoogle Scholar
  57. 57.
    Sørensen OW (1989) Prog Nucl Magn Reson Spectrosc 21:503–569CrossRefGoogle Scholar
  58. 58.
    Hahn EL (1950) Phys Rev 80:580–594CrossRefGoogle Scholar
  59. 59.
    Rowan LG, Hahn EL, Mims WB (1965) Phys Rev 137:A61–A71CrossRefGoogle Scholar
  60. 60.
    Mims WB (1972) Phys Rev B 5:2409–2419CrossRefGoogle Scholar
  61. 61.
    Mims WB, Davis JL, Peisach J (1990) J Magn Reson 86:273–292CrossRefGoogle Scholar
  62. 62.
    Höfer P, Grupp A, Nebenführ H, Mehring M (1986) Chem Phys Lett 132:279–282CrossRefGoogle Scholar
  63. 63.
    Gemperle C, Aebli G, Schweiger A, Ernst RR (1990) J Magn Reson 88:241–256CrossRefGoogle Scholar
  64. 64.
    Kurshev VV, Raitsimring AM, Tsvetkov YD (1989) J Magn Reson 81:441–454CrossRefGoogle Scholar
  65. 65.
    Jeschke G, Pannier M, Godt A, Spiess HW (2000) Chem Phys Lett 331:243–252CrossRefGoogle Scholar
  66. 66.
    Saxena S, Freed JH (1996) Chem Phys Lett 251:102–110CrossRefGoogle Scholar
  67. 67.
    Saxena S, Freed JH (1997) J Chem Phys 107:1317–1340CrossRefGoogle Scholar
  68. 68.
    Borbat PP, Freed JH (1999) Chem Phys Lett 313:145–154CrossRefGoogle Scholar
  69. 69.
    Milov AD, Salikhov KM, Shirov MD (1981) Fiz Tverd Tela 23:975–982Google Scholar
  70. 70.
    Milov AD, Maryasov AG, Tsvetkov YD (1998) Appl Magn Reson 15:107–143CrossRefGoogle Scholar
  71. 71.
    Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) J Magn Reson 142:331–340CrossRefGoogle Scholar
  72. 72.
    Jeschke G, Panek G, Godt A, Bender A, Paulsen H (2004) Appl Magn Reson 26:223–244CrossRefGoogle Scholar
  73. 73.
    Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) Appl Magn Reson 30:473–498CrossRefGoogle Scholar

Bibliography

  1. 74.
    Atherton NM (1973) Principles of electron spin resonance. Ellis Horwood, ChichesterGoogle Scholar
  2. 75.
    Weil A, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, New YorkGoogle Scholar
  3. 76.
    Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, OxfordGoogle Scholar
  4. 77.
    Hore PJ, Jones JA, Wimperis S (2000) NMR: The toolkit. Oxford University Press, OxfordGoogle Scholar
  5. 78.
    Jeschke G (1998) Einführung in die ESR-Spektroskopie (lecture notes), MainzGoogle Scholar
  6. 79.
    Jeschke G (2008) Kurze Einführung in die elektronenparamagnetische Resonanz-spektroskopie (lecture notes), KonstanzGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations