Abstract

In this chapter, we describe and compare the different optimal approaches of the homotopy analysis method (HAM). A generalized optimal HAM is proposed, which logically contains the basic optimal HAM with only one convergence-control parameter and also the optimal HAM with an infinite number of parameters. It is found that approximations given by the optimal HAMs converge fast in general. Especially, the basic optimal HAM mostly gives good enough approximations. Thus, the optimal HAMs with a couple of convergence-control parameters are strongly suggested in practice.

Keywords

Homotopy Analysis Method Pertur Bation Auxiliary Linear Operator Linear ODEs Illustrative Descri Ption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adomian, G.: Nonlinear stochastic differential equations. J. Math. Anal. Applic. 55, 441–452 (1976).MathSciNetMATHCrossRefGoogle Scholar
  2. Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Comput. Math. Appl. 21, 101–127 (1991).MathSciNetMATHCrossRefGoogle Scholar
  3. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston (1994).MATHGoogle Scholar
  4. Adomian, G., Adomian, G.E.: A global method for solution of complex systems. Math. Model. 5, 521–568 (1984).Google Scholar
  5. Akyildiz, F.T., Vajravelu, K.: Magnetohydrodynamic flow of a viscoelastic fluid. Phys. Lett. A. 372, 3380–3384 (2008).MATHCrossRefGoogle Scholar
  6. Awrejcewicz, J., Andrianov, I.V., Manevitch, L.I.: Asymptotic Approaches in Nonlinear Dynamics. Springer-Verlag, Berlin (1998).MATHCrossRefGoogle Scholar
  7. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM (1996).Google Scholar
  8. Cherruault, Y.: Convergence of Adomian’s method. Kyberneters. 8, 31–38 (1988).Google Scholar
  9. Cole, J.D.: Perturbation Methods in Applied Mathematics. Blaisdell Publishing Company, Waltham (1992).Google Scholar
  10. He, J.H.: Homotopy perturbation technique. Comput. Method. Appl. M. 178, 257–262 (1999).MATHCrossRefGoogle Scholar
  11. Hilton, P.J.: An Introduction to Homotopy Theory. Cambridge University Press, Cambridge (1953).MATHGoogle Scholar
  12. Karmishin, A.V., Zhukov, A.T., Kolosov, V.G.: Methods of Dynamics Calculation and Testing for Thin-walled Structures (in Russian). Mashinostroyenie, Moscow (1990).MATHGoogle Scholar
  13. Kevorkian, J., Cole, J.D.: Multiple Scales and Singular Perturbation Methods. Springer-Verlag, New York (1995).Google Scholar
  14. Liang, S.X., Jeffrey, D.J.: Comparison of homotopy analysis method and homotopy perturbation method through an evalution equation. Commun. Nonlinear Sci. Numer. Simulat. 14, 4057–4064 (2009).MathSciNetMATHCrossRefGoogle Scholar
  15. Liao, S.J.: The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. PhD dissertation, Shanghai Jiao Tong University (1992).Google Scholar
  16. Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II) — An application in fluid mechanics. Int. J. Nonlin. Mech. 32, 815–822 (1997).MATHCrossRefGoogle Scholar
  17. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlin. Mech. 34, 759–778 (1999).MATHCrossRefGoogle Scholar
  18. Liao, S.J.: Beyond Perturbation-Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003).CrossRefGoogle Scholar
  19. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004).MathSciNetMATHCrossRefGoogle Scholar
  20. Liao, S.J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate. Stud. Appl. Math. 117, 2529–2539 (2006).CrossRefGoogle Scholar
  21. Liao, S.J.: Notes on the homotopy analysis method-Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 14, 983–997 (2009a).MATHCrossRefGoogle Scholar
  22. Liao, S.J.: A general approach to get series solution of non-similarity boundary layer flows. Commun. Nonlinear Sci. Numer. Simulat. 14, 2144–2159 (2009b).MATHCrossRefGoogle Scholar
  23. Liao, S.J.: Series solution of deformation of a beam with arbitrary cross section under an axial load. ANZIAM J. 51, 10–33 (2009c).MathSciNetMATHCrossRefGoogle Scholar
  24. Liao, S.J.: On the relationship between the homotopy analysis method and Euler transform. Commun. Nonlinear Sci. Numer. Simulat. 15, 1421–1431 (2010a).MATHCrossRefGoogle Scholar
  25. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2003–2016 (2010b).MATHCrossRefGoogle Scholar
  26. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–355 (2007).MathSciNetCrossRefGoogle Scholar
  27. Lindstedt, A.: Under die integration einer für die storungstheorie wichtigen differentialgleichung. Astron. Nach. 103, 211–222 (1882).MATHCrossRefGoogle Scholar
  28. Lyapunov, A.M.: General Problem on Stability of Motion (English translation). Taylor & Francis, London (1992).Google Scholar
  29. Marinca, V., Herişanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass. 35, 710–715 (2008).CrossRefGoogle Scholar
  30. Marinca, V., Herişanu, N.: An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plat. Appl. Math. Lett. 22, 245–251 (2009).MathSciNetMATHCrossRefGoogle Scholar
  31. Marinca, V., Herişanu, N.: Comments on “A one-step optimal homotopy analysis method for nonlinear differential equations”. Commun. Nonlinear Sci. Numer. Simulat. 15, 3735–3739 (2010).MATHCrossRefGoogle Scholar
  32. Murdock, J.A.: Perturbations — Theory and Methods. JohnWiley & Sons, New York (1991).MATHGoogle Scholar
  33. Nayfeh, A.H.: Perturbation Methods. John Wiley & Sons, New York (2000).MATHCrossRefGoogle Scholar
  34. Niu, Z., Wang, C.: A one-step optimal homotopy analysis method for nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2026–2036 (2010a).MathSciNetMATHCrossRefGoogle Scholar
  35. Niu, Z., Wang, C.: Reply to “Comments on ‘A one-step optimal homotopy analysis method for nonlinear differential equations’”. Commun. Nonlinear Sci. Numer. Simulat. 15, 3740–3743 (2010b).MathSciNetMATHCrossRefGoogle Scholar
  36. Rach, R.: A new definition of Adomian polymonial. Kybernetes. 37, 910–955 (2008).MathSciNetMATHCrossRefGoogle Scholar
  37. Sen, S.: Topology and Geometry for Physicists. Academic Press, Florida (1983).MATHGoogle Scholar
  38. Von Dyke, M.: Perturbation Methods in Fluid Mechanics. The Parabolic Press, Stanford (1975).MATHGoogle Scholar
  39. Yabushita, K., Yamashita, M., Tsuboi, K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A — Math. Theor. 40, 8403–8416 (2007).MathSciNetMATHCrossRefGoogle Scholar
  40. Yang, C., Liao, S.J.: On the explicit, purely analytic solution of Von Kármán swirling viscous flow. Commun. Nonlinear Sci. Numer. Simulat. 11, 83–39 (2006).MathSciNetMATHCrossRefGoogle Scholar
  41. Zhao, J., Wong, H.Y.: A closed-form solution to American options under general diffussion processes. Quant. Financ. (Available online, DOI: 10.1080/14697680903193405).Google Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shijun Liao
    • 1
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations