In this chapter, we illustrate the validity of the HAM-based Mathematica package BVPh (version 1.0) for nonlinear partial differential equations (PDEs) related to non-similarity boundary-layer flows. We show that, using BVPh 1.0, a non-similarity boundary-layer flow can be solved in a rather similar way to that for similarity ones governed by nonlinear ODEs. In other words, in the frame of the HAM, solving non-similarity boundary-layer flows is as easy as similarity ones. This shows the validity of the BVPh 1.0 for some nonlinear PDEs, especially for those related to boundary-layer flows.


Homotopy Analysis Method Auxiliary Linear Operator Linear ODEs Accor Ding Homotopy Analysis Method Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adomian, G.: Nonlinear stochastic differential equations. J. Math. Anal. Applic. 55, 441–452 (1976).MathSciNetMATHCrossRefGoogle Scholar
  2. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston (1994).MATHGoogle Scholar
  3. Banks, W.H.H.: Similarity solutions of the boundary-layer equations for a stretching wall. Journal de Mecanique theorique et appliquee. 2, 375–392 (1983).MATHGoogle Scholar
  4. Blasius, H.: Grenzschichten in Füssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908).Google Scholar
  5. Cheng, W.T., Lin, H.T.: Non-similarity solution and correlation of transient heat transfer in laminar boundary layer flow over a wedge. Int. J. Engineering Science. 40, 531–548 (2002).CrossRefGoogle Scholar
  6. Cimpean, D., Merkin, J.H., Ingham, D.B.: On a free convection problem over a vertical flat surface in a porous medium. Transport in Porous. 64, 393–411 (2006).MathSciNetCrossRefGoogle Scholar
  7. Crane, L.: Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970).MATHCrossRefGoogle Scholar
  8. Duck, P.W., Stow, S.R., Dhanak, M.R.: Non-similarity solutions to the corner boundary-layer equations (and the effects of wall transpiration). J. Fluid Mechanics. 400, 125–162 (1999).MathSciNetMATHCrossRefGoogle Scholar
  9. Gorla, R.S.R., Kumari, M.: Non-similar solutions for mixed convection in non-Newtonian fluids along a vertical plate in a porous medium. Transport in Porous. 33, 295–307 (1998).CrossRefGoogle Scholar
  10. Görtler, H.: Eine neue Reihenentwicklung für laminare Grenzschichten. ZAMM. 32, 270–271 (1952).MATHCrossRefGoogle Scholar
  11. He, J.H.: Homotopy perturbation technique. Comput. Method. Appl. M. 178, 257–262 (1999).MATHCrossRefGoogle Scholar
  12. Howarth, L.: On the solution of the laminar boundary layer equations. Proc. Roy. Soc. London A. 164, 547–579 (1938).MATHCrossRefGoogle Scholar
  13. Karmishin, A.V., Zhukov, A.T., Kolosov, V.G.: Methods of Dynamics Calculation and Testing for Thin-walled Structures (in Russian). Mashinostroyenie, Moscow (1990).Google Scholar
  14. Kousar, N., Liao, S.J.: Series solution of non-similarity boundary flows over a porous wedge. Transport Porous Media. 83, 397–412 (2010).MathSciNetCrossRefGoogle Scholar
  15. Kousar, N., Liao, S.J.: Unsteady non-similarity boundary-layer flows caused by an impulsively stretching flat sheet. Nonlinear Analysis B. 12, 333–342 (2011).MathSciNetMATHCrossRefGoogle Scholar
  16. Liang, S.X., Jeffrey, D.J.: Comparison of homotopy analysis method and homotopy perturbation method through an evalution equation. Commun. Nonlinear Sci. Numer. Simulat. 14, 4057–4064 (2009).MathSciNetMATHCrossRefGoogle Scholar
  17. Liao, S.J.: The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. PhD dissertation, Shanghai Jiao Tong University (1992).Google Scholar
  18. Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II)-An application in fluid mechanics. Int. J. Nonlin. Mech. 32, 815–822 (1997).MATHCrossRefGoogle Scholar
  19. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlin. Mech. 34, 759–778 (1999a).MATHCrossRefGoogle Scholar
  20. Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999b).MathSciNetMATHCrossRefGoogle Scholar
  21. Liao, S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003a).MathSciNetMATHCrossRefGoogle Scholar
  22. Liao, S.J.: Beyond Perturbation-Introduction to the Homotopy Analysis Method. Chapman & Hall/ CRC Press, Boca Raton (2003b).CrossRefGoogle Scholar
  23. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004).MathSciNetMATHCrossRefGoogle Scholar
  24. Liao, S.J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int. J. Heat Mass Tran. 48, 2529–2539 (2005).MATHCrossRefGoogle Scholar
  25. Liao, S.J.: An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate. Communications in Nonlinear Science and Numerical Simulation. 11, 326–339 (2006a).MathSciNetMATHCrossRefGoogle Scholar
  26. Liao, S.J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate. Stud. Appl. Math. 117, 2529–2539 (2006b).CrossRefGoogle Scholar
  27. Liao, S.J.: Notes on the homotopy analysis method-Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 14, 983–997 (2009a).MATHCrossRefGoogle Scholar
  28. Liao, S.J.: A general approach to get series solution of non-similarity boundary layer flows. Commun. Nonlinear Sci. Numer. Simulat. 14, 2144–2159 (2009b).MATHCrossRefGoogle Scholar
  29. Liao, S.J.: On the relationship between the homotopy analysis method and Euler transform. Commun. Nonlinear Sci. Numer. Simulat. 15, 1421–1431 (2010a). doi:10.1016/j.cnsns.2009.06.008.MATHCrossRefGoogle Scholar
  30. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2003–2016 (2010b).MATHCrossRefGoogle Scholar
  31. Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002).MathSciNetMATHCrossRefGoogle Scholar
  32. Liao, S.J., Pop, I.: Explicit analytic solution for similarity boundary layer equations. Int. J. Heat Mass Transfer. 47, 75–85 (2004).CrossRefGoogle Scholar
  33. Liao, S.J., Su, J., Chwang, A.T.: Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body. Int. J. Heat and Mass Transfer. 49, 2437–2445 (2006).MATHCrossRefGoogle Scholar
  34. Liao, S.J., Magyari, E.: Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones. Z. angew. Math. Phys. 57, 777–792 (2006).MathSciNetMATHCrossRefGoogle Scholar
  35. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–355 (2007).MathSciNetCrossRefGoogle Scholar
  36. Lyapunov, A.M.: General Problem on Stability of Motion (English translation). Taylor & Francis, London (1992).Google Scholar
  37. Magyari, E., Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur. J. Mech. B-Fluids. 19, 109–122 (2000).MathSciNetMATHCrossRefGoogle Scholar
  38. Massoudi, M.: Local non-similarity solutions for the flow of a non-Newtonian fluid over a wedge. Int. J. Non-Linear Mech. 36, 961–976 (2001).MathSciNetMATHCrossRefGoogle Scholar
  39. Prandtl, L.: Über Flüssigkeitsbewegungen bei sehr kleiner Reibung. Verhandlg. Int. Math. Kongr. Heidelberg. 484–491 (1904).Google Scholar
  40. Roy, S., Datta, P., Mahanti, N.C.: Non-similar solution of an unsteady mixed convection flow over a vertical cone with suction or injection. Int. J. of Heat and Mass Transfer. 50, 181–187 (2007).MATHCrossRefGoogle Scholar
  41. Sajid, M., Hayat, T.: Comparison of HAM and HPM methods for nonlinear heat conduction and convection equations. Nonlin. Anal. B. 9, 2296–2301 (2008).MathSciNetMATHCrossRefGoogle Scholar
  42. Sahu, A.K., Mathur, M.N., Chaturani, P., Bharatiya, S.S.: Momentum and heat transfer from a continuous moving surface to a power-law fluid. Acta Mechanica. 142, 119–131 (2000).MATHCrossRefGoogle Scholar
  43. Schlichting, H., Gersten, K.: Boundary Layer Theory. Springer, Berlin (2000).MATHGoogle Scholar
  44. Sobey, I.J.: Introduction to Interactive Boundary Layer Theory. Oxford University Press, Oxford (2000).MATHGoogle Scholar
  45. Sparrow, E.M., Quack, H.: Local non-similarity boundary-layer solutions. AIAA J. 8, No.8, 1936–1942 (1970).MATHGoogle Scholar
  46. Sparrow, E.M., Yu, H.S.: Local non-similarity thermal boundary-layer solutions. J. Heat Transfer Trans. ASME. 328–334 (1971).Google Scholar
  47. Stewartson, C.D., Williams: Viscous flow past a flat plate with uniform injection. Proceedings of Royal Society (A). 284, 370–396 (1965).MathSciNetMATHCrossRefGoogle Scholar
  48. Tani, I.: Histry of boundary-layer theory. Ann. Rev. Fluid Mech. 9, 87–111 (1977).CrossRefGoogle Scholar
  49. Van Dyke, M.: Higher approximations in boundary-layer theory. Part 1: General analysis. Journal of Fluid Mechanics. 14, 161–177 (1962).MathSciNetCrossRefGoogle Scholar
  50. Wanous, K.J., Sparrow, E.M.: Heat transfer for flow longitudinal to a cylinder with surface mass transfer. J. Heat Transfer Trans. Ser. C. 87, 317–319 (1965).CrossRefGoogle Scholar
  51. You, X.C., Xu, H., Liao, S.J.: On the non-similarity boundary-Layer flows of second-order fluid over a stretching sheet. ASME J. App. Mech. 77: 021002-1 (2010).Google Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shijun Liao
    • 1
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations