Advertisement

Efficient RDFS Entailment in External Memory

  • Wouter J. Haffmans
  • George H. L. Fletcher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7046)

Abstract

The entailment of an RDF graph under the RDF Schema standard can easily become too costly to compute and maintain. It is often more desirable to compute on-demand whether a triple exists in the entailment. This is a non-trivial task likely to incur I/O costs, since RDF graphs are often too large to fit in internal memory. As disk I/O is expensive in terms of time, I/O costs should be minimized to achieve better performance. We investigate three physical indexing methods for RDF storage on disk, comparing them using the state of the art RDF Schema entailment algorithm of Muñoz et al. In particular, the I/O behavior during entailment checking over these graph representations is studied. Extensive empirical analysis shows that an enhanced version of the state of the art indexing method, which we propose here, yields in general the best I/O performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chirkova, R., Fletcher, G.H.L.: Towards well-behaved schema evolution. In: WebDB (2009)Google Scholar
  2. 2.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Review 51(4), 661–703 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Erling, O.: Towards web scale RDF. In: SSWS (2008)Google Scholar
  4. 4.
    Fletcher, G.H.L., Beck, P.W.: Scalable indexing of RDF graphs for efficient join processing. In: CIKM, pp. 1513–1516 (2009)Google Scholar
  5. 5.
    Haffmans, W.: A Study of Efficient RDFS Entailment in External Memory. Master’s thesis, Eindhoven University of Technology (June 2011), http://www.simply-life.net/thesis.pdf
  6. 6.
    Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: Dynamic Querying of Mass-storage RDF Data with Rule-based Entailment Regimes. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 310–327. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Muñoz, S., Pérez, J., Gutierrez, C.: Simple and efficient minimal RDFS. J. Web Semantics 7(3), 220–234 (2009)CrossRefGoogle Scholar
  8. 8.
    Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. VLDB J. 19(1), 91–113 (2010)CrossRefGoogle Scholar
  9. 9.
    Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.: Marvin: Distributed reasoning over large-scale semantic web data. J. Web Semantics 7(4), 305–316 (2009)CrossRefGoogle Scholar
  10. 10.
    Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a survey. SIGMOD Record 38(4), 23–28 (2009)CrossRefGoogle Scholar
  11. 11.
    Salvadores, M., Correndo, G., Harris, S., Gibbins, N., Shadbolt, N.: The Design and Implementation of Minimal RDFS Backward Reasoning in 4store. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 201. LNCS, vol. 6644, pp. 139–153. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Schmidt, M., Hornung, T., Küchlin, N., Lausen, G., Pinkel, C.: An Experimental Comparison of RDF Data Management Approaches in a SPARQL Benchmark Scenario. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 82–97. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Sidirourgos, L., et al.: Column-store support for RDF data management: not all swans are white. PVLDB 1(2), 1553–1563 (2008)Google Scholar
  14. 14.
    ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF schema and a semantic extension involving the OWL vocabulary. J. Web Semantics 3(2-3), 79–115 (2005)CrossRefGoogle Scholar
  15. 15.
    Theoharis, Y.: On Power Laws and the Semantic Web. Master’s thesis, University of Crete (February 2007)Google Scholar
  16. 16.
    Theoharis, Y., Tzitzikas, Y., Kotzinos, D., Christophides, V.: On graph features of semantic web schemas. IEEE Trans. Knowl. Data Eng. 20(5), 692–702 (2008)CrossRefGoogle Scholar
  17. 17.
    Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reasoning using mapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    W3C: RDF semantics (February 2004), http://www.w3.org/TR/rdf-mt/
  19. 19.
    W3C: RDF vocabulary description language 1.0: RDF schema (February 2004), http://www.w3.org/TR/rdf-schema/
  20. 20.
    Williams, G.T., Weaver, J., Atre, M., Hendler, J.A.: Scalable reduction of large datasets to interesting subsets. J. Web Semantics 8(4), 365–373 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wouter J. Haffmans
    • 1
  • George H. L. Fletcher
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations