Motion Planning Using a ToF Camera for Manipulation in Cluttered Environments

  • Zhixing Xue
  • Jens Küehnle
  • Steffen W. Rüehl
  • Rüediger Dillmann
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 76)

Abstract

A Time-of-Flight camera can help a service robot to sense its 3D environment. The modeled environment information can be used by motion planning algorithms to plan a collision free movement for the robot, or by grasp planning algorithms to find feasible grasps for an a priori unknown object in the scene. To guarantee that the models used by the planning algorithms are consistent with the real world, calibration of the Time-of-Flight camera is necessary. In this article, the intrinsic and extrinsic parameter calibration procedures applied in the DESIRE project are presented. A segmentation using GPU calculation is used to separate the sensed model and a priori information of the environment. We use a motion planning algorithm based on Probabilistic Roadmaps to plan collision free movement for the DESIRE platform.

Keywords

Motion Planning Service Robot Unknown Object Cluttered Environment Tool Center Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(5), 698–700 (1987)CrossRefGoogle Scholar
  2. 2.
    Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)Google Scholar
  3. 3.
    Grundmann, T., Eidenberger, R., Zöllner, R.D., Xue, Z., Rühl, S., Zöllner, J.M., Dillmann, R., Kühnle, J., Verl, A.: Integration of 6d object localization and obstacle detection for collision free robotic manipulation. In: IEEE International Symposium on System Integration (2008)Google Scholar
  4. 4.
    González-Banos, H.H., David Hsu, J.C.L.: Motion planning: Recent developments. In: Ge, S.S., Lewis, F.L. (eds.) Autonomous Mobile Robots: Sensing, Control, Decision-Making and Applications (2006)Google Scholar
  5. 5.
    Kahlmann, T., Remondino, F., Ingensand, H.: Calibration for increased accuracy of the range imaging camera swissranger (2006)Google Scholar
  6. 6.
    Kavraki, L.E., LaValle, S.M.: Motion planning. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, ch. 5, pp. 109–131. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Kühnle, J., Xue, Z., Grundmann, T., Verl, A., Rühl, S., Eidenberger, R., Zöllner, J.M., Zöllner, R.D., Dillmann, R.: 6d object localization and obstacle detection for collision-free manipulation with a mobile service robot. In: 14th International Conference on Advanced Robotics (2009)Google Scholar
  8. 8.
    Ruehl, S.W., Xue, Z., Kerscher, T., Dillmann, R.: Towards Automatic Manipulation Action Planning for Service Robots. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS, vol. 6359, pp. 366–373. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Saha, M., Sanchez, G., Latombe, J.C.: Planning multi-goal tours for robot arms. In: IEEE International Conference on Robotics and Automation (2003)Google Scholar
  10. 10.
    Sanchez, G., Latombe, J.-C.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In: Jarvis, R., Zelinsky, A. (eds.) Robotics Research. STAR, vol. 6, pp. 403–417. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Zhixing Xue
    • 1
  • Jens Küehnle
    • 2
  • Steffen W. Rüehl
    • 1
  • Rüediger Dillmann
    • 1
  1. 1.Forschungszentrum Informatik (FZI)KarlsruheGermany
  2. 2.Fraunhofer IPAStuttgartGermany

Personalised recommendations