Inductive Learning of Disjointness Axioms

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7045)


The tremendous amounts of linked data available on the web are a valuable resource for a variety of semantic applications. However, these applications often need to face the challenges posed by flawed or underspecified representations. The sheer size of these data sets, being one of their most appealing features, is at the same time a hurdle on the way towards more accurate data because this size and the dynamics of the data often hinder manual maintenance and quality assurance. Schemas or ontologies constraining, e.g., the possible instantiations of classes and properties, could facilitate the automated detection of undesired usage patterns or incorrect assertions, but only few knowledge repositories feature schema-level knowledge of sufficient expressivity. In this paper, we present several approaches to enriching learned or manually engineered ontologies with disjointness axioms, an important prerequisite for the applicability of logical approaches to knowledge base debugging. We describe the strengths and weaknesses of these approaches and report on a detailed evaluation based on the DBpedia dataset.


Linked Data Ontology Learning OWL Data Mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), pp. 487–499. Morgan Kaufmann (1994)Google Scholar
  2. 2.
    Antonie, M.-L., Zaïane, O.R.: Mining Positive and Negative Association Rules: An Approach for Confined Rules. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 27–38. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Auer, S., Lehmann, J.: Creating knowledge out of interlinked data. Semantic Web 1(1-2), 97–104 (2010)Google Scholar
  4. 4.
    Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 230–235. AAAI Press (2007)Google Scholar
  5. 5.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Web Semantics 7(3), 154–165 (2009)CrossRefGoogle Scholar
  6. 6.
    Borgelt, C., Kruse, R.: Induction of association rules: Apriori implementation. In: Proceedings of the 15th Conference on Computational Statistics (COMPSTAT), pp. 395–400. Physica Verlag (2002)Google Scholar
  7. 7.
    Cimiano, P., Völker, J.: Text2Onto. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Cohen, J.: Statistical power analysis for the behavioral sciences, 2nd edn. Larwence Erlbaum, New Jersey (1988)zbMATHGoogle Scholar
  9. 9.
    Cornet, R., Abu-Hanna, A.: Usability of expressive description logics – a case study in UMLS. In: Proceedings of the AMIA Annual Symposium, pp. 180–184 (2002)Google Scholar
  10. 10.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A Framework for Handling Inconsistency in Changing Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Haase, P., Völker, J.: Ontology Learning and Reasoning — Dealing with Uncertainty and Inconsistency. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 366–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. International Journal on Semantic Web and Information Systems 5(2), 25–48 (2009)CrossRefGoogle Scholar
  13. 13.
    Hitzler, P., van Harmelen, F.: A reasonable semantic web. Journal of Semantic Web 1(1-2), 39–44 (2010)Google Scholar
  14. 14.
    Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lehmann, J., Bühmann, L.: ORE - A Tool for Repairing and Enriching Knowledge Bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 177–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Mädche, A., Staab, S.: Discovering conceptual relations from text. In: Proceedings of the 14th European Conference on Artificial Intelligence (ECAI), pp. 321–325. IOS Press (2000)Google Scholar
  17. 17.
    Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning Disjointness for Debugging Mappings Between Lightweight Ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: Proceedings of the 14th International Conference on World Wide Web (WWW), pp. 633–640. ACM (2005)Google Scholar
  19. 19.
    Qi, G., Haase, P., Huang, Z., Ji, Q., Pan, J.Z., Völker, J.: A Kernel Revision Operator for Terminologies — Algorithms and Evaluation. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 419–434. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Schlobach, S.: Debugging and Semantic Clarification by Pinpointing. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 226–240. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Schlobach, S.: Diagnosing terminologies. In: Proceedings of the 20th National Conference on Artificial Intelligence (NCAI), vol. 2, pp. 670–675. AAAI Press (2005)Google Scholar
  22. 22.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl reasoner. Web Semantics 5, 51–53 (2007)CrossRefGoogle Scholar
  23. 23.
    Stumme, G., Hotho, A., Berendt, B.: Semantic web mining: State of the art and future directions. Journal of Web Semantics 4(2), 124–143 (2006)CrossRefGoogle Scholar
  24. 24.
    Teng, W.G., Hsieh, M.J., Chen, M.S.: On the mining of substitution rules for statistically dependent items. In: Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM), pp. 442–449. IEEE Computer Society (2002)Google Scholar
  25. 25.
    Völker, J., Niepert, M.: Statistical Schema Induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning Disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann (2005)Google Scholar
  28. 28.
    Zhang, C., Zhang, S.: Association rule mining: models and algorithms. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.KR & KM Research GroupUniversity of MannheimGermany

Personalised recommendations