Asymptotic Models of Different Complexity for Viscous Jets and Their Applicability Regimes

Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 17)

Abstract

This paper presents asymptotic models of different complexity for the simulation of slender viscous jets in spinning processes. In the slenderness limit a viscous Cosserat rod reduces to a string system. We propose two string models, i.e. inertial and viscous-inertial string models, that differ in the closure conditions and hence yield a boundary value problem and an interface problem, respectively. Their convergence/applicability regimes where the respective string solution is the asymptotic limit to the rod turn out to be disjoint and to cover nearly the whole parameter space of Reynolds, Froude, Rossby numbers and jet length. We explore the transition hyperplane analytically for the gravitational two-dimensional scenario.

Keywords

Asymptotic Limit String Model Rossby Number Asymptotic Model String System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (2006)Google Scholar
  2. 2.
    Arne, W., Marheineke, N., Meister, A., Wegener, R.: Numerical analysis of Cosserat rod and string models for viscous jets in rotational spinning processes. Math. Mod. Meth. Appl. Sci. 20(10), 1941–1965 (2010)Google Scholar
  3. 3.
    Arne, W., Marheineke, N., Wegener, R.: Asymptotic transition of cosserat rod to string models for curved inertial viscous jets. Math. Mod. Meth. Appl. Sci. 21(10), 1987–2018 (2011)Google Scholar
  4. 4.
    Chiu-Webster, S., Lister, J.R.: The fall of a viscous thread onto a moving surface: a ’fluid-mechanical sewing machine’. J. Fluid. Mech. 569, 89–111 (2006)Google Scholar
  5. 5.
    Götz, T., Klar, A., Unterreiter, A., Wegener, R.: Numerical evidence for the non-existence of solutions to the equations describing rotational fiber spinning. Math. Mod. Meth. Appl. Sci. 18(10), 1829–1844 (2008)Google Scholar
  6. 6.
    Hlod, A., Aarts, A.C.T., van de Ven, A.A.F., Peletier, M.A.: Mathematical model of falling of a viscous jet onto a moving surface. Euro. J. Appl. Math. 18, 659–677 (2007)Google Scholar
  7. 7.
    Ribe, N.M.: Coiling of viscous jets. Proc. Roy. Soc. London, A 2051, 3223–3239 (2004)Google Scholar
  8. 8.
    Ribe, N.M., Lister, J.R., Chiu-Webster, S.: Stability of a dragged viscous thread: onset of ’stitching’ in a fluid-mechanical ’sewing machine’. Phys. Fluid. 18, 124,105 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Walter Arne
    • 1
  • Nicole Marheineke
    • 2
  • Raimund Wegener
    • 3
  1. 1.Universität Kassel, Fachbereich Mathematik und NaturwissenschaftenKasselGermany
  2. 2.Department MathematikFAU Erlangen-NürnbergErlangenGermany
  3. 3.Fraunhofer ITWMKaiserslauternGermany

Personalised recommendations